3. в языке человека и машины. Язык человека носит понятийный характер.
Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина "говорит" не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.
Использование математических методов при анализе процессов отражательной деятельности мозга стало возможным благодаря некоторым допущениям, сформулированным Маккаллоком и Питтсом. В их основе абстрагирование от свойств естественного нейрона, от характера обмена веществ и т.д. нейрон рассматривается с чисто функциональной стороны. Существующие модели, имитирующие деятельность мозга (Ферли, Кларка, Неймана, Комбертсона, Уолтера, Джоржа, Шеннона, Аттли, Берля и др.) отвлечены от качественной специфики естественных нейронов. Однако, с точки зрения изучения функциональной стороны деятельности мозга это оказывается несущественным.
В литературе (6,10,13) существует ряд подходов к изучению мозговой деятельности: - теория автоматического регулирования (живые системы рассматриваются в качестве своеобразного идеального объекта) - информационный (пришел на смену энергетическому подходу) Его основные принципы:
а) выделение информационных связей внутри системы
б) выделение сигнала из шума в) вероятностный характер
Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, по мнению Н. М. Амосова, создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, по его же мнению, любая модель связана с упрощением, в частности: - не все функции и специфические свойства учитываются - отвлечение от социального, нейродинамического характера.
Таким образом, делается вывод о критическом отношении к данному методу (нельзя переоценивать его возможности, но вместе с тем, необходимо его широкое применение в данной области с учетом разумных ограничений) .
3. Использование моделирования в исследованиях экономических систем.
а. Модели агрегированной экономики.
Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.
Почему можно говорить об эффективности применения методов моделирования в этой области? Во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем: - изменчивость (динамичность) противоречивость поведения - тенденция к ухудшению характеристик - подверженность воздействию окружающей среды предопределяют выбор метода их исследования.
За последние 30-40 лет методы моделирования экономики разрабатывались очень интенсивно. Они строились для теоретических целей экономического анализа и для практических целей планирования, управления и прогноза. Содержательно модели экономики объединяют такие основные процессы: производство, планирование, управление, финансы и т.д. Однако в соответствующих моделях всегда упор делается на какой-нибудь один процесс (например, процесс планирования) , тогда как все остальные представляются в упрощенном виде.
В литературе, посвященной вопросам экономико-математического моделирования, в зависимости от учета различных факторов (времени, способов его представления в моделях; случайных факторов и т.п.) выделяют, например, такие классы моделей:
1. статистические и динамические
2. дискретные и непрерывные
3. детерминированные и стохастические.
Если же рассматривать характер метода, на основе которого строится экономико-математическая модель, то можно выделить два основных типа моделей: математические - имитационные.
Развитие первого направления в мировой и отечественной науке связано с такими именами, как Л. Н. Канторович, Дж. Ф. Нейман, В. С. Немчинов, Н. А. Новожилов, Л. Н. Леонтьев и многие другие. Большой интерес в этом направлении представляют модели агрегированной экономики, где рассматривается отраслевой, народнохозяйственный уровень. Динамические народнохозяйственные модели используются в роли верхних координирующих звеньев систем экономико-математических моделей.
С ростом временного горизонта увеличивается разнообразие вариантов перспективного развития экономики и возрастает число степеней свободы для выбора оптимальных решений, поскольку уменьшается влияние ограниченности ресурсов, неизбежно предопределяемой предшествующим развитием. Однако с ростом временного горизонта фактор неопределенности также начинает играть все возрастающую роль. По мнению Ю. Н. Черемных (18 с25) , "укрупненная номенклатура динамических моделей регламентируется в первую очередь качеством информационного обеспечения. Переход к такой номенклатуре для сокращения размерности может быть продиктован недостаточно мощным алгоритмическим и машинным обеспечением. " Для отыскания оптимальных траекторий динамических народнохозяйственных моделей используются как конечные, так и бесконечные методы, предложенные для решения задач математического программирования. Большое теоретическое и прикладное значение динамических моделей стимулировало многих авторов на разработку специальных методов поиска оптимальных траекторий. Предложенные методы учитывают явно или не явно блочную структуру ограничений динамических моделей и строятся обычно без учета конкретных особенностей оптимальных траекторий.
б. Имитационное моделирование и исследование экономических систем.
Теперь хотелось бы подробнее остановиться на применении имитационного моделирования экономических систем, процессов.
По словам крупного ученого в этой области Р. Шеннона, "идея имитационного моделирования проста и интуитивно привлекательна, позволяет экспериментировать с системами, когда на реальном объекте этого сделать нельзя. " (19 с7) . В основе этого метода - теория вычислительных систем, статистика, теория вероятностей, математика.
Все имитационные модели построены по типу "черного ящика", т.е.
сама система (ее элементы, структура) представлены в виде "черного ящика"; есть какой-то вход в него, который описывается экзогенными переменными (возникают вне системы, под воздействием внешних причин) , и выход (описывается выходными переменными) , который характеризует результат действия системы.
В имитационном исследовании большое значение имеет этап оценки модели, который включает в себя следующие шаги:
1. Верификация модели (модель ведет себя так, как это было задумано исследователем) .
2. Оценка адекватности (проверка соответствия модели реальной системе) .
3. Проблемный анализ (формирование статистически значимых выводов на основе данных, полученных в результате экспериментов с моделью) .
Большой интерес представляет концепция в имитационном моделировании - метод системной динамики - разработанная одним из крупнейших специалистов в области теории управления, профессором в школе управления Альфреда П. Слоуна в Массачусетском технологическом институте, Джеймсом Форрестером. Его первая книга в этой области "Кибернетика предприятия" вызвала огромный интерес мировой науки к методу системной динамики в имитационном моделировании.
Начало глобальному моделированию положил другой труд Дж. Форрестера "Мировая динамика" (15) . Здесь он рассматривает мир как единое целое, как единую систему различных взаимодействующих процессов: демографических, промышленных, процессов исчерпания природных ресурсов и загрязнения окружающей среды, процесса производства продуктов питания. Расчеты показали, что при сохранении развития общества, точнее сегодняшних тенденций его развития, неизбежен серьезный кризис во взаимодействии человека и окружающей среды. Этот кризис объясняется противоречием между ограниченностью земных ресурсов, конечностью пригодных для сельскохозяйственной обработки площадей и все растущими темпами потребления увеличивающегося населения. Рост населения, промышленного и сельскохозяйственного производства приводит к кризису: быстрому загрязнению окружающей среды, истощению природных ресурсов, упадку производства и повышению смертности. На основании анализа этих результатов делается вывод о необходимости стабилизации промышленного роста и материального потребления.
Дж. Форрестер продолжал развитие своей концепции в книге "Динамика развития города" (14) . В ней описана модель города, посредством которой он пытается исследовать развитие города с момента его возникновения и на протяжении многих десятилетий. Город является сложной системой, в которой зависимости между элементами не могут быть описаны линейными функциями. Эти отношения существенно не линейны. Это обстоятельство позволяет применять к исследованию города хорошо развитый аналитический аппарат современной математики, который более приспособлен для исследования именно линейных зависимостей, присущих простым системам. С другой стороны, процессы, протекающие в сложных системах, недетерминированы, стохастичны и не допускают точного однозначного описания. Сложные системы характеризуются огромным количеством обратных связей - положительных и отрицательных между взаимообусловленно влияющими друг на друга элементами системы. Поэтому эффективность применения в этой предметной области метода системной динамики несомненна.