Смекни!
smekni.com

Связь софистики и кибернетики (стр. 3 из 4)

2.4 Основные тождества

В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением еще нескольких.

Сводная таблица свойств и аксиом, описанных выше:

1 коммутативность
2 ассоциативность
3.1 конъюнкция относительно дизъюнкции
3.2 дизъюнкция относительно конъюнкции
3 дистрибутивность
4 дополнительность (свойства отрицаний)
5 законы де Моргана
6 законы поглощения
7 Блейка-Порецкого
8 Идемпотентность
9 инволютивность отрицания
10 свойства констант
дополнение 0 есть 1
дополнение 1 есть 0
11 Склеивание

2.5 Примеры

Самая простая нетривиальная булева алгебра содержит всего два элемента, 0 и 1, а действия в ней определяются следующей таблицей:

0 1
0 0 1
1 1 1
a 0 1
¬a 1 0

Эта булева алгебра наиболее часто используется в логике, так как является точной моделью классического исчисления высказываний. В этом случае 0 называют ложью, 1 — истиной. Выражения, содержащие булевы операции и переменные, представляют собой высказывательные формы.

Алгебра Линденбаума — Тарского (фактормножество всех утверждений по отношению равносильности в данном исчислении с соответствующими операциями) какого-либо исчисления высказываний является булевой алгеброй. В этом случае истинностная оценка формул исчисления является гомоморфизмом алгебры Линденбаума — Тарского в двухэлементную булеву алгебру.

Множество всех подмножеств данного множества S образует булеву алгебру относительно операций ∨ := ∪ (объединение), ∧ := ∩ (пересечение) и унарной операции дополнения. Наименьший элемент здесь — пустое множество, а наибольший — всё S.

Если R — произвольное кольцо, то на нём можно определить множество центральных идемпотентов так:
A = { e ∈ R : e2 = e, ex = xe, ∀x ∈ R },
тогда множество A будет булевой алгеброй с операциями e ∨ f := e + f − ef и e ∧ f := ef.

Принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Что в свою очередь также указывает на связь булевой алгебры с софистикой, так как в софизмах также используется принцип двойственности.

2.6 Представления булевых алгебр

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Знаменитая теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактноговполне несвязногохаусдорфова топологического пространства.

2.7 Аксиоматизация

В 1933 г. американский математик Хантингтон предложил следующую аксиоматизацию для булевых алгебр:

Аксиома коммутативности: x + y = y + x.

Аксиома ассоциативности: (x + y) + z = x + (y + z).

Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.

Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание.

Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй?

Аксиоматизация алгебры Роббинса:

Аксиома коммутативности: x + y = y + x.

Аксиома ассоциативности: (x + y) + z = x + (y + z).

Уравнение Роббинса: n(n(x + y') + n(x + n(y))) = x.

Этот вопрос оставался открытым с 30-х годов и был любимым вопросом Тарского и его учеников.

В 1996 г. Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.

3 Информатика и кибернетика

Информатика также как и Булева алгебра использует бинарную систему.

Информатика – научная дисциплина, изучающая вопросы, связанные с поиском, сбором, хранением, преобразованием и использованием информации в самых различных сферах человеческой деятельности. Генетически информатика связана с вычислительной техникой, компьютерными системами и сетями, так как именно компьютеры позволяют порождать, хранить и автоматически перерабатывать информацию в таких количествах, что научный подход к информационным процессам становится одновременно необходимым и возможным.

Каждая из составных частей информатики может рассматриваться как относительно самостоятельная научная дисциплина; взаимоотношения между ними примерно такие же, как между алгеброй геометрией и математическим анализом в классической математике – все они хоть и самостоятельные дисциплины, но, несомненно, части одной науки.

Теоретическая информатика – часть информатики, включающая ряд математических разделов. Она опирается на математическую логику и включает такие разделы, как теория алгоритмов и автоматов, теория информации и теория кодирования, теория формальных языков и грамматик, исследование операций и другие. Этот раздел информатики использует математические методы для общего изучения процессов обработки информации.

Информатика изучает методы, связанные с переработкой, хранением и другое информации, а кибернетика что позволяет осуществить эти методы.

3.1 История кибернетики

Впервые термин кибернетика предположительно был употреблён Платоном в смысле искусства управления кораблём или колесницей.

Термин в современном его значении ввёл Норберт Винер, считающийся отцом-основателем кибернетики как отдельной самостоятельной науки. Само слово использовалось и ранее Некоторые задачи кибернетики были поставлены А.А. Богдановым в его организационной науке «тектология», впоследствии забытой современниками.

В СССР в философский словарь 1954-го года издания попала характеристика кибернетики как "реакционной лженауки". В 1960-е и 1970-е гг. на кибернетику делалсь большая ставка, как на техническую, так и на экономическую.

Кибернетика(от греч.kybernetike - "искусство управления", от греч.kybernao - "правлю рулём, управляю", от греч.Κυβερνήτης - "кормчий") — наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе.