Дальнейшая разработка вопросов теории атома привела к пониманию, что движение электронов в атоме нельзя описывать в терминах классической механики (как движение no on-
ределенной траектории или орбите), поскольку движение электрона между уровнями не подчиняется законам, определяющим поведение электронов в атоме. Была необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.
В 1925 г. В. Гейзенберг построил формальную схему, где вместо координат и скоростей электрона фигурировали абстрактные алгебраические величины - матрицы. Связь матриц с наблюдаемыми величинами (уровнями энергии и интенсивностями квантов, переходов) описывалась простыми непротиворечивыми правилами. Развитие М. Борном и П. Иорданом работы Гейзенберга привело к возникновению матричной механики. Уравнение Шрёдингера позволило показать математическую эквивалентность волновой (основанной на уравнении Щрёдингера) и матричной механики. В 1926 г. Борн дал вероятностную интерпретацию волн де Бройля.
Большую роль в создании квантовой механики сыграли работы П. Дирака, который заложил основы квантовой электродинамики и квантовой теории гравитации, разработал квантовую статистику (статистика Ферми - Дирака), релятивистскую теорию движения электрона, предсказал позитрон и т.д. Окончательное формирование квантовой механики как последовательной теории с ясными физическими основами и стройным математическим аппаратом произошло в результате работы Гейзенберга (1927), который сформулировал соотношение неопределенностей - важнейшее соотношение, отражающее физический смысл уравнений квантовой механики.
Детальный анализ спектров атомов привел к представлению о том, что электрону кроме заряда и массы должна быть приписана еще одна внутренняя характеристика - спин - собственно момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого. Важную роль сыграл открытый В. Паули (1925) принцип запрета, согласно которому в квантовой системе две (или более) тождественные частицы с полуцелым спином не могут одновременно находиться в одном и том же состоянии. Этот принцип имеет фундаментальное значение в теории атома, молекулы, ядра, твердого тела.
В течение короткого времени квантовую механику с успехом применили для создания теории атомных спектров, стро-
ения молекул, химической связи, периодической системы элементов, металлической проводимости и ферромагнетизма. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской квантовой механикой.
Современные представления об элементарных частицах и атомах
В настоящее время достаточно много известно об атомарном строении вещества и элементарных частицах - мельчайших известных частицах физической материи [7, 16, 23, 24, 28]. Поскольку элементарные частицы способны к взаимным превращениям, это не позволяет рассматривать их, так же как и атом, в качестве простейших, неизменных <кирпичиков мироздания>. Число элементарных частиц очень велико. Всего открыто более 350 элементарных частиц, из которых стабильны лишь фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы (каждая элементарная частица, за исключением абсолютно нейтральных, имеет свою античастицу). Остальные элементарные частицы самопроизвольно распадаются за время от 103 с (свободный нейтрон) до 10~22- 10~24с (резонансы).
Элементарные частицы классифицируются по типам фундаментальных взаимодействий, в которых они участвуют, и на основе законов сохранения ряда физических величин следующим образом:
О группа лептонов - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом;
О адроны - элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка;
О отдельную <группу> составляет фотон.
При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение
многих дополнительных частиц), не запрещаемые законами сохранения.
Атомом называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Вокруг ядра движутся электроны, образующие электронные оболочки, размеры которых (10~8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в Периодической таблице элементов. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке. Соединяясь химически, атомы образуют молекулы.
Внутренняя энергия атома может принимать лишь определенные (дискретные) значения, соответствующие устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень энергии). Испуская фотон, атом может перейти из возбужденного состояния в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные - возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.
Нуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра, надо совершить большую работу, т.е. сообщить ядру значительную энергию. По закону сохранения энергии, энергия связи ядра (энергия, необходимая для полного расщепления ядра на отдельные нуклоны) равна энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром. Определить энергию связи ядра можно, зная
массу ядра и массы протонов и нейтронов, из которых оно состоит. Согласно эффекту дефекта массы, масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. Энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна Е = т/с2, где т - суммарная масса свободных нуклонов минус масса ядра - дефект массы.
Важную информацию о свойствах ядер дает знание удельной энергии связи ядра (энергии связи, приходящейся на <дин нуклон). С увеличением массового числа - числа нуклонов в ядре - удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума у железа (массовое число 56), после чего плавно снижается. Наиболее устойчивы ядра, обладающие самой большой удельной энергией связи, - железо и близкие к. жму хикйта^жи-е. ?эяемйнты Йър^дич&сжой системы элементов.
Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер. И те, и другие реакции сопровождаются выделением энергии. В тяжелых ядрах наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют значительные ядерные силы, которые удерживают ядро от распада. Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Когда силы отталкивания внутри ядра начинают преобладать над силами притяжения, ядро разрывается на две части. Под действием сил кулоновского отталкивания осколки ядра разлетаются со скоростью, равной 1/30 скорости света, испускается излучение высокой частоты.
Не все ядра способны к делению. Наиболее легко делится изотоп урана 235U, составляющий всего 1/140 от более распространенного изотопа 23 8U. При каждом акте деления ядра испускаются 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер - начинается ядерная цепная реакция. Она сопровождается выделением огромного количества энергии. Так, при полном делении ядер, находящихся в 1 г урана, выделяется энергия, эквивалентная получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер реализуется в ядерных реакторах, неуправляемая -
в атомной бомбе. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций, протекающих лишь при очень высоких температурах. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. В этом отношении наиболее перспективна реакция слияния ядер атома дейтерия и трития.
Микромир |
Мир микрообъектов. Мир предельно малых масштабов. Пространственные характеристики исчисляются от 10-8 до 10-16 см, а время – от бесконечности до 10-24 сек. |