Смекни!
smekni.com

Сущность квантово-механической концепции описания микромира (стр. 2 из 4)

Следующую попытку Шредингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась выводом волнового уравнения Шредингера, дающего математическое описание материи в терминах волновой функции. Э. Шредингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории. Волновое уравнение определяет параметры будущего состояния микрообъекта с той или иной степенью вероятности.

В 1927 г. Вернер Гейзенберг стал профессором теоретической физики Лейпцигского университета. В том же году он опубликовал работу, содержащую формулировку принципа неопределенности. Свой принцип Гейзенберг вывел как следствие умножения матриц. При умножении обычных чисел порядок сомножителей несуществен, а при умножении матриц он очень важен. При вычислении операции умножения над некоторыми парами величин, например импульсом частицы и ее пространственной координатой, ответ в матричной механике будет зависеть от того, какая из величин (импульс или пространственная координата) стоит на первом месте. Понятие упорядоченности величин оказалось весьма глубоким. Оно означало, что точное определение одной величины влияет на значение другой, поэтому значения двух величин одновременно невозможно знать с абсолютной точностью. Физические величины обычно становятся известны в результате измерений. Принцип неопределенности устанавливает предел для точности измерений. Понятие упорядоченности величин оказалось весьма глубоким, это означало, что одновременно сколько угодно точно определить координату и импульс частицы не возможно. В микромире описание процессов возможно лишь на вероятностном уровне.[8]

Вопрос № 3: «Особенности волновой генетики».

Открытия, сделанные в квантовой механике, оказали плодотворное воздействие не только на развитие физики, но и на другие области естествознания, прежде всего на биологию, в рамках которой была разработана концепция волновой, или квантовой генетики.

В 1957 г. в Китае исследователь Дзян Каньджен начал, а с 70-х на Российской земле продолжил супергенетические эксперименты, которые перекликались с предвидениями русских ученых А.Г. Гурвича и А.А. Любищева. В 20-х - 30-х годах они предсказали, что генетический аппарат организмов Земли работает не только на вещественном, но и на полевом уровне и способен передавать генетическую информацию с помощью электромагнитных и акустических волн.

В последнее десятилетие к слову "генетическая" стали добавлять приставки "эпи", "супер", "сверх", что отражает понимание недостаточности чисто вещественных потенций хромосом для кодирования структуры организмов.
Однако около 60 лет назад А.А. Любищев пошел дальше. Он предсказывал, что и полевой уровень также не исчерпывает всех информационных возможностей генома.

С 60-х годов в Новосибирске акад. В.П. Казначеевым и его школой начаты исследования, призванные подтвердить идеи Гурвича-Любищева. И они действительно продемонстрировали так называемый зеркальный цитопатический эффект, когда клетки, разделенные кварцевым стеклом, обмениваются волновой регуляторной информацией, связанной с функциями генетического аппарата [12].

Дзян Каньджень, имевший кроме медицинского образования еще и инженерное, исходя из своих представлений, в какой-то мере совпадавших с гено-биополевой моделью Гурвича-Любищева-Казначеева, сконструировал аппаратуру, которая была способна считывать, передавать на расстояние и вводить волновые супергенетические сигналы с биосистемы-донора в организм-акцептор. В результате были выведены гибриды, немыслимые, "запрещенные" официальной генетикой, которая оперирует понятиями только вещественных генов. Так появились на свет животные и растения-химеры, такие как куро-утки, цыплята с волосами самого Дзян-Каньдженя, кролики с рогами козы, кукуруза, из початков которой росли пшеничные колосья и т.д.

Автор, интуитивно понимавший некоторые стороны, фактически созданной им Экспериментальной Волновой Генетики, считает, что носителями полевой геноинформации являются сверхвысокочастотные электромагнитные излучения, используемые в его аппаратуре, так называемого "био-СВЧ". Однако, его теоретическая модель волнового генома наивна. Исследователь талантлив как практик, ведомый безошибочным чутьем природы, но не способный дать адекватного объяснения результатам своих экспериментов.

Возникла необходимость в теоретическом развитии модели Волнового Генома, работы хромосом и ДНК в полевом и вещественном измерениях. Первые попытки решить эту задачу предприняли П.П. Гаряев и А.А. Березин из Отдела Теоретических Проблем РАН, а также А.А. Васильев, сотрудник Физического Института РАН. В основу их теоретической конструкции были положены принципы когерентных физических излучений, голографии и солитоники, теория физического вакуума, фрактальные представления структур ДНК и человеческой речи.

Суть идей Гаряева-Березина-Васильева ("ГБВ-модель") состоит в том, что геном высших организмов рассматривается как биоголографический компьютер, формирующий пространственно-временную структуру биосистем. При этом в качестве носителей полевых эпигеноматриц выступают волновые фронты, задаваемые геноголограммами, и т.н. солитоны на ДНК - особый вид акустических и электромагнитных полей, продуцируемых генетическим аппаратом самого организма и способных к посредническим функциям по обмену стратегической регуляторной информацией между клетками, тканями и органами биосистемы. [2]

Заключение

Микромир – это мир предельно малых, непосредственно не наблюдаемых микрообъектов. (Пространственная размерность, которых исчисляется от 10-8 до 10-16 см, а время жизни – от бесконечности до 10-24 с.)

Квантовая механика (волновая механика) – это теория, устанавливающая способ описания и законы движения на микроуровне.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений.

Рождение и развитие квантовой физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира. Но классическая механика Ньютона при этом не исчезла. По сей день, она занимает почетное место среди других естественных наук. С ее помощью, например, рассчитывается движение искусственных спутников Земли, других космических объектов и т.д. Но трактуется она теперь как частный, случай квантовой механики, применимый для медленных движений и больших масс объектов макромира.

Список использованных источников

1. Концепции современного естествознания: Учебник длявузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. — 3-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. - 317 с.;

2. http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81_%D0%9F%D0%BB%D0%B0%D0%BD%D0%BA;

3. http://n-t.ru/nl/fz/planck.htmn-t.ru/nl/fz/einstein.htm;

4. http://n-t.ru/nl/fz/bohr.htm;

5. http://n-t.ru/ri/br/;

6. http://www.physchem.chimfak.rsu.ru/Source/History/Persones/Schroedinger.html;

7. http://n-t.ru/nl/fz/schrodinger.htm;

8. http://n-t.ru/nl/fz/heisenberg.htm.

6.4. Концепции микромира и квантовая механика

Сущность квантовой механики и границы ее применимости

Для описания явлений микромира обычно привлекают квантовую механику (иногда ее еще называют волновой механикой). Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Например, квантовая механика позволила объяснить температурную зависимость теплоемкос-тей газов и твердых тел и вычислить их значения, определить строение и понять многие свойства твердых тел (металлов, диэлектриков, полупроводников), последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводи-

мость, понять природу астрофизических объектов - белых карликов, нейтронных звезд, выяснить механизм протекания термоядерных реакций на Солнце и звездах. В некоторых эффектах (например, Джозефсона) законы квантовой механики проявляются непосредственно в поведении макроскопических объектов.

Ряд крупнейших технических достижений XX в. основан по сути на специфических законах квантовой механики. Например, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления термоядерных реакций в земных условиях, наблюдаются в ряде явлений в металлах и полупроводниках и т.д. Теория квантово-механи-ческого излучения составляет фундамент квантовой электроники. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (магнитных, полупроводниковых, сверхпроводящих и др.).