Смекни!
smekni.com

Логические операции над понятиями (стр. 2 из 2)

Логическая операция, раскрывающая объем родового понятия путем перечисления соответствующих ему видовых понятий называется Делением.

Термин "деление понятия" описывает два взаимосвязанных процесса: мысленное деление объема родового понятия на подклассы, а также соотнесение родового и вводимых для описания образовавшихся подклассов видовых понятий.

3.1. Классификация понятия

Логическая операция, состоящая в ряде последовательных актов деления, называется классификацией.

Деление и классификация - по сути однородные операции, различающиеся лишь количественно (числом актов деления). Но если в случае деления понятия акцент обычно делается на одном из параллельных процессов - на установлении соотношения "родовое понятие - видовые понятия", то в случае классификации - на втором, а именно на подразделении исходного класса на все более мелкие подклассы (объемы видов и “видов видов”...). Поэтому обычно говорят "деление понятия", но “классификация предметов” (например, бабочек или законов).


3.2. Структура логического деления

В структуре логического деления есть три элемента: делимое (родовое понятие), члены деления (видовые понятия), основание деления.

Основание деления - признак (или совокупность признаков), по которому проводится деление.

В зависимости от характера основания логическое деление делится на виды: дихотомическое и деление по видоизменению признака.

3.3. Правила классификации

Деление понятия (классификация) должно подчиняться ряду правил.

1) Деление должно быть соразмерным.

Иначе говоря, объединение объемов членов деления должно давать объем делимого понятия. Нарушение данного правила - несоразмерное деление (некоторые члены не указываются).

Если нет возможности или необходимости перечислять все члены деления, то процедура корректно "закрывается" выражениями типа “и так далее”, “и тому подобное” и им подобным, а также троеточием.

2) Деление должно проводиться по одному основанию.

Нарушение этого правила будет состоять в том, что процесс деления ведут по одному основанию, а продолжают,/заканчивают по другому, Например: студенты делятся по успеваемости на успевающих и неуспевающих. По национальному признаку - русские, евреи, узбеки. Но нельзя смешивать и делить на успевающих, неуспевающих и узбеков (хотя связь может быть)

3) Члены деления должны исключать друг друга.

Иначе говоря, в результате деления должно получить несовместимые (точнее, соподчиненные) понятия. Причиной нарушения этого правила бывает нарушение предыдущего.

4) В ходе классификации деление должно быть непрерывным.

Это значит, что в процессе деления исходного родового понятия следует переходить к его ближайшим видовым, не пропуская (“не перескакивая”) их. В противном случае возникает ошибка - “скачок в делении”. Типичный ее пример: "Живые существа делятся на растения, млекопитающих животных и студентов заочников "


4. Простейшие логические операции, связанные в основном с изменением объёма понятий

4.1. Сложение

Сложение (объединение)- состоит в объединении двух или нескольких классов в один класс, состоящий из элементов слагаемых классов. Например, объединяя класс "пришедших на занятие студентов" - (А) и "не пришедших на занятие студентов " - (не-А) получим класс "студентов" (В), включающее и "пришедших на занятие студентов " и " не пришедших на занятие студентов ".


4.2. Умножение

Умножение (пересечение) - состоит в отыскивании элементов общим для двух или нескольких классов (множеств). Так, в результате умножения множеств, находящихся в понятиях «студент» (В) и "интеллектуал" (А), получаем новое множество «студентов-интеллектуалов» (С).

4.3. Отрицание


Отрицание (дополнение к классу) - дополнение к классу А называется класс НЕ-И, который при сложении с А образует универсальную область. Так исключая множество заочников из универсального класса студентов, образуем дополнение: множество студентов - «не заочников» (студентов дневного и вечернего отделения)[1]

4.4. Вычитание.

Вычитание объема одного понятия из объема другого дает, в зависимости от видов рассматриваемых понятий, усеченную область объема. Вычитание возможно только между пересекающимися и подчинены


.[2]

Заключение

Таким образом, понятие и операции с ним, является одной из основных форм абстрактного мышления. Оно не только способно замещать или представлять предметы, но и позволяет анализировать их, отвлекаясь от несущественного, случайного, что дает возможность глубже проникать в действительность, отображать ее с большей полнотой.

Логические операции с понятиями — такие мыслительные действия, результатом которых является изменение содержания или объема понятий, а также образование новых понятий. Рациональное познание отличается от чувственного, в частности, тем, что на данной ступени познаются не только отдельные предметы, но и выделяется, то общее, что есть у различных предметов, то есть формируются понятия, с помощью которых формулируются утверждения общего характера, научные законы. Абстрактное мышление представляет собой процесс оперирования понятиями. Особое внимание во многих сферах человеческой деятельности (в науке, в различных областях права, в медицине и т.д.) обращается на точность используемой терминологии.


Литература

1. Бочаров В.А., Маркин В.И. Основы логики. - М.: Космополис, 1994.

2. Ивлев Ю.В. Логика. М.: Логос, 1997 г.

3. А. Д. ГЕТМАНОВА. Учебник ПО ЛОГИКЕ, Москва 1995 г.

4. Логика. Учебное пособие для студентов вузов. Ростов-на-Дону. Изд. "Феникс", 96 г.

5. Тягло А. В. Логика критического мышления (в конспектном изложении), -Х., Харьковский институт управления. 96 г.

6. Тягло А. В. Логика с элементами курса критического мышления. -Х, Изд. УВС "Основа", 1998

7. Доказательство и понимание. Монография. М. В. Попович, С. Б. Крымский и др. -К., изд. "Наукова думка", 1986

8. http://baslogic.ru/?%A0_Predmet_i_Nauka:Operacii_nad_ponyatiyami


[1] А. Д. ГЕТМАНОВА. Учебник ПО ЛОГИКЕ

[2] http://baslogic.ru/?%A0_Predmet_i_Nauka:Operacii_nad_ponyatiyami