Смекни!
smekni.com

Системный метод исследования и его специфика (стр. 1 из 3)

Содержание:

1. Введение……………………………………………………..стр.3

2. Специфика системного метода исследования………..стр.4

3. Система и её окружение………………………………….стр.8

4. Метод и перспективы системного исследования…...стр.11

5. Список использованных источников…………………..стр.16

Введение

Под системой понимают совокупность компонентов и устойчивых, повторяющихся связей между ними. Процесс системного рассмотрения объектов широко применяется в самых различных областях общественных, естественных и технических наук, в практике социального планирования и управления в обществе, при решении комплексных социальных проблем, при подготовке и реализации разнообразных целевых программ.

В широком смысле слова под системным исследованием предметов и явлений окружающего нас мира понимают такой метод, при котором они рассматриваются как части и элементы определенного целостного образования. Эти части или элементы, взаимодействуя друг с другом, определяют новые, целостные свойства системы, которые отсутствуют у отдельных ее элементов. Главное, что определяет систему, — это взаимосвязь и взаимодействие частей в рамках целого. Для системного исследования характерно именно целостное рассмотрение, установление взаимодействия составных частей или элементов совокупности, несводимость свойств целого к свойствам частей.

Корни системного подхода к изучению окружающего мира уходят в глубокую древность. В неявной форме он широко применялся в античной науке, хотя сам термин «система» появился значительно позднее. Древние греки рассматривали природу и мир как нечто единое целое, в котором предметы, явления и события связаны множеством различных связей. Основой такого единства у ранних греческих философов выступает определенное материальное начало: вода у Фалеса, воздух у Анаксимена и огонь у Гераклита. Однако эта верная, в общем, идея не раскрывалась в конкретных связях явлений и процессов, не доказывалась в частностях. Это и вполне понятно, ибо у древних греков не было конкретных наук и все, что можно было назвать положительным знанием, наравне с натурфилософскими спекуляциями входило в состав нерасчлененной философии. Исключением являлась лишь математика, в которой они создали знаменитый аксиоматический метод построения знания, до сих пор служащий важнейшим средством логической систематизации и обоснования не только математического, но и любого знания вообще.

С переходом к опытному изучению природы и возникновением экспериментального естествознания в XVII в. происходит расчленение знаний по отдельным областям природы, группам явлений, отраслям, и научным дисциплинам. Начинается дисциплинарный способ построения и развития научного знания, когда каждая наука тщательно и досконально изучает свой предмет, используя специфические методы исследования, не интересуясь при этом ни целями и задачами, ни способами познания других наук. Такой подход, обладал определенными преимуществами, но в то же время ограничивал возможности исследователей узкими рамками своей дисциплины и тем самым препятствовал установлению связей между другими дисциплинами. В результате этого единая природа оказалась искусственно поделенной между разобщенными науками. Несмотря на это, дифференциация науки продолжала расти, число отдельных научных дисциплин все больше увеличивалось, и, соответственно, ослабевали связи и взаимопонимание ученых. Со временем такое положение становилось все более нетерпимым, и вопреки сопротивлению отдельных групп ученых возникали интегративные, междисциплинарные методы и теории, с помощью которых, используя общие понятия и принципы, решались проблемы, которые выдвигались перед науками, изучавшими взаимосвязанные процессы и формы движения материи, а потом и более общие теории. Так, еще в конце XIX — начале XX в. возникли биофизика и биохимия, геофизика и геохимия, химическая физика и физическая химия и другие.
Настоящий прорыв в системных исследованиях произошел после окончания Второй мировой войны, когда возникло мощное системное движение, способствовавшее внедрению идей, принципов и методов системного исследования не только в естествознание, но и в социально-экономические и гуманитарные науки. Именно системный подход способствовал тому, что каждая наука стала рассматривать в качестве своего предмета изучение систем определенного типа, которые находятся во взаимодействии с другими системами. Согласно новому подходу, мир предстал в виде огромного множества систем самого разнообразного конкретного содержания и общности, объединенных в единое целое — Вселенную.

Специфика системного метода исследования

Приведенное выше определение системы достаточно для того, чтобы отличать системы от таких совокупностей предметов и явлений, которые системами не являются. В нашей литературе для них не существует специального термина. Поэтому мы будем обозначать их заимствованным из англоязычной литературы термином агрегаты. Кучу камней, вряд ли кто-либо назовет системой, в то время как физическое тело, состоящее из большого числа взаимодействующих молекул, или химическое соединение, образованное из нескольких элементов, а тем более живой организм, популяцию, вид и другие сообщества живых существ всякий будет интуитивно считать системой.

Чем мы руководствуемся при отнесении одних совокупностей объектов к системам, а других — к агрегатам? Очевидно, что в первом случае мы замечаем определенную целостность, единство составляющих систему элементов, а во втором такое единство и взаимосвязь отсутствуют и поэтому речь должна идти о простой совокупности, или агрегате, элементов.

Таким образом, для системного подхода характерно именно целостное рассмотрение, установление взаимодействия составных частей или моментов совокупности, несводимость свойств целого к свойствам частей.

Следует, однако, отметить, что различие между системами и агрегатами, или просто совокупностями объектов, имеет не абсолютный, а относительный характер и зависит от того, как подходят к исследованию совокупности. Ведь даже кучу камней можно рассматривать как некоторую систему, элементы которой взаимодействуют по закону всемирного тяготения. Тем не менее, здесь мы не обнаруживаем возникновения новых целостных свойств, которые присущи настоящим системам. Этот отличительный признак систем, заключающийся в наличии у них новых интегративных, целостных свойств, которые возникают вследствие взаимодействия составляющих их частей или элементов, всегда следует иметь в виду при определении систем.

В последние годы предпринималось немало попыток дать логическое определение понятию системы. Поскольку в логике типичным способом является определение через ближайший род и видовое отличие, постольку в качестве родового понятия обычно выбирались наиболее общие понятия математики и даже философии. В современной математике таким понятием считается понятие множества, введенное в конце прошлого века немецким математиком Г. Кантором (1845—1918) для обозначения любой совокупности математических объектов, обладающих некоторым общим свойством. Поэтому Р. Фейджин и А. Холл воспользовались понятием множества для логического определения системы.
«Система, — пишут они, — это множество объектов вместе с отношениями между объектами и между их атрибутами (свойствами)». Такое определение нельзя назвать корректным, хотя бы потому, что самые различные совокупности объектов можно назвать множествами и для многих из них можно установить определенные отношения между объектами, так что видовое отличие для систем (differentia specified) не указано. Дело, однако, не столько в формальной некорректности определения, сколько в его содержательном несоответствии действительности. В самом деле, в нем не отмечается, что объекты, составляющие систему, взаимодействуют таким образом, что они обусловливают возникновение новых, целостных, системных свойств. По-видимому, такое предельно широкое понятие, как система, нельзя определить чисто логически через другие существующие понятия. Поэтому его следует признать исходным и неопределяемым понятием, содержание которого можно объяснить с помощью примеров. Именно так обычно поступают в науке, когда приходится имен, дело с исходными, первоначальными ее понятиями, например с множеством в математике или массой и зарядом в физике.

Для лучшего понимания природы систем необходимо рассмотреть, сначала их основные свойства, строение и структуру, а затем и классификацию.

Основными свойствами систем являются:

· всеобщий характер, поскольку в качестве системы могут рассматриваться все без исключения предметы и явления окружающего мира;

· невещественность;

· внутренняя противоречивость (конкретность и абстрактность, целостность и дискретность, непрерывность и прерывность);

· способность к взаимодействию;

· упорядоченность и целостность;

· устойчивость и взаимообусловленность.

Способность процессов и явлений мира образовывать системы, наличие систем, системного строения материальной действительности и форм ее познания получила название системности. Понятие системности отражает одну из характерных признаков действительности: способность вступать в такого рода взаимодействия, в результате которых образуются новые качества, не присущие исходным объектам взаимодействия.

Строение системы характеризуется теми компонентами, из которых она образована. Такими компонентами являются: подсистемы, части или элементы системы, в зависимости оттого, что принимается за основу деления.

· Подсистемы составляют части системы, которые обладают определенной автономностью, но в то же время они подчинены системе и управляются ею. Обычно подсистемы выделяются в системах, организованных особым образом которые называются иерархическими.

· Элементами обычно называют наименьшие единицы системы, хотя в принципе любую часть можно рассматривать в качестве элемента, если отвлечься от ее размера.