Смекни!
smekni.com

Ядерное оружие и его поражающее действие (стр. 4 из 8)

Световое излучение при непосредственном воздействии на людей может вызывать ожоги открытых и защищенных одеждой участков тела, а также поражение органа зрения. Кроме того ожоги могут возникать в результате поваров и действия горючего воздуха в ударной волне.

Световое излучение, в первую очередь, воздействует на открытые участки тела - кисти рук, лицо, тело, а также на глаза. Различают четыре степени ожогов: ожог первой степени представляет собой поверхностное поражение кожи, внешне проявляющиеся в её покраснении; ожог второй степени характеризуется образованием пузырей; ожог третьей степени вызывает омертвление глубоких слоев кожи; при ожоге четвертой степени обугливается кожа и подкожная клетчатка, а иногда и более глубокие ткани.

Таблица 5. Величины световых импульсов, соответствующие ожогам кожи различной степени, Кал/см2

Степеньожога Открытые участки кожи при мощности взрыва, кт Участки кожи под обмундированием
1 10 100 1000 Летним Зимним
Первая 2,4 3,2 4 4,8 6 35
Вторая 4 6 7 9 10 40
Третья 8 9 11 12 15 50
Четвертая >8 >9 >11 >12 >15 >50

Защита от СИ более проста, чем от других поражающих факторов ядерного взрыва, поскольку любая непрозрачная преграда, любой объект, создающие тень, могут служить защитой от светового излучения.

Эффективным способом защиты личного состава от светового излучения является быстрое залегание за какою-либо преграду. Если при вспышке взрыва ядерного боеприпаса крупного калибра человек успеет занять укрытие в течении 1-2 с, то время действия на него светового излучения будет уменьшено в несколько раз, что значительно снизит вероятность поражения.

При угрозе применения ядерного оружия экипажи танка, БМП, БТР должны закрыть люки, а внешние приборы наблюдения должны иметь автоматические устройства, закрывающие их при ядерном взрыве.

Военная техника и другие наземные объекты в результате воздействия светового излучения могут быть уничтожены или повреждены пожарами. А в приборах ночного видения могут выходить из строя электронно-оптические преобразователи. Световое излучение приводит к возникновению пожаров в лесу и населенных пунктах.

В качестве дополнительных мер защиты от поражающего действия светового излучения рекомендуется следующее;

использование экранирующих свойств оврагов, местных предметов;

постановка дымовых завес для поглощения энергии светового излучения;

повышение отражательной способности материалов (побелка мелом, покрытие красками светлых тонов);

повышение стойкости к воздействию светового излучения (обмазка глиной, обсыпка грунтом, снегом, пропитка тканей огнестойкими составами);

проведение противопожарных мероприятий (удаление сухой травы и других горючих материалов, вырубка просек и огнезащитных полос);

использование в темное время суток средств защиты глаз от временного ослепления (очков, световых затворов и др.).

Проникающая радиация ядерного взрыва.

Проникающая радиация ядерного взрыва представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва.

Поражающее действие на организм человека оказывают только свободные нейтроны, т.е. те, которые не входят в состав ядер атомов. При ядерном взрыве они образуются в процессе цепной реакции деления ядер урана или плутония (мгновенные нейтроны) и при радиоактивной распаде осколков их деления (запаздывающие нейтроны).

Суммарное время действия основной части нейтронов в районе ядерного взрыва равно примерно одной секунде, а скорость их распространения от зоны ядерного взрыва десятки и сотни тысяч километров в секунду, но меньше, чем скорость света.

Основным источником потока гамма-излучения при ядерном взрыве является реакция деления ядер вещества заряда, радиоактивный распад осколков деления и реакция захвата нейтронов ядрами атомов среды.

Время действия проникающей радиации на наземные объекты зависит от мощности боеприпаса и может составить 15-25 с с момента взрыва.

Радиоактивные осколки деления ядер находятся в начале в светящейся области, а затем в облаке взрыва. Вследствие подъема этого облака, расстояния от него до земной поверхности быстро увеличивается, а суммарная активность осколков деления вследствие их радиоактивного распада снижается. Поэтому происходит быстрое ослабление потока гамма лучей, достигающих земной поверхности и действие гамма-излучения на земные объекты через указанное время (15-25 с) после взрыва практически прекращается.

Гамма лучи и нейтроны, распространяясь в среде, ионизируют ее атомы, что сопровождается расходом энергии гамма квантов и нейтронов. Количество энергии, теряемой гамма квантами и нейтронами на ионизацию единицы массы среды, характеризует ионизирующую способность, а следовательно, и поражающее действие проникающей радиации.

Гамма - и нейтронное излучения, так же как и альфа - и бета-излучения, различаются по своему характеру, однако общим для них является то, что они могут ионизировать атомы той среды, в которой они распространяются.

Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 000 км/с. Альфа-частицей называется ядро гелия, состоящее из двух нейтронов и двух протонов. Каждая альфа-частица несет с собой определенную энергию. Из-за относительно малой скорости и значительного заряда альфа-частицы взаимодействуют с веществом наиболее эффективно, т.е. обладают большой ионизирующей способностью, вследствие чего их проникающая способность незначительна. Лист бумаги полностью задерживает альфа-частицы. Надежной защитой от альфа-частиц при внешнем облучении является одежда человека.

Бета-излучение представляет собой поток бета-частиц. Бета-час-тицей называется излученный электрон или позитрон. Бета-частицы в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света. Их заряд меньше, а скорость больше, чем альфа-частиц. Поэтому бета-частицы обладают меньшей ионизирующей, но большей проникающей способностью, чем альфа-частицы. Одежда человека поглощает до 50% бета-частиц. Следует отметить, что бета-частицы почти полностью поглощаются оконными или автомобильными стеклами и металлическими экранами толщиной в несколько миллиметров.

Поскольку альфа - и бета-излучения обладают малой проникающей, но большой ионизирующей способностью, то наиболее опасно их действие при попадании внутрь организма или непосредственно на кожу (особенно на глаза) веществ их испускающих.

Гамма-излучение представляет собой электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. По своей природе гамма-излучение подобно рентгеновскому, но обладает значительно большей энергией (меньшей длиной волны), испускается отдельными порциями (квантами) и распространяется со скоростью света (300 000 км/с). Гамма-кванты не имеют электрического заряда, поэтому ионизирующая способность гамма-излучения значительно меньше, чем у бета-частиц и тем более у альфа-частиц (в сотни раз меньше, чем у бета - и в десятки тысяч, чем у альфа-частиц). Зато гамма-излучение обладает наибольшей проникающей способностью и является важнейшим фактором поражающего действия радиоактивных излучений.

Нейтронное излучение представляет собой поток нейтронов. Скорость нейтронов может достигать 20 000 км/с. Так как нейтроны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. Нейтронное излучение оказывает сильное поражающее действие при внешнем облучении.

Сущность ионизации заключается в том, что под воздействием радиоактивных излучений электрически нейтральные в нормальных условиях атомы и молекулы вещества распадаются на пары положительно и отрицательно заряженных частиц-ионов. Ионизация вещества сопровождается изменением его основных физико-химических свойств, в биологической ткани - нарушением ее жизнедеятельности. И то и другое при определенных условиях может нарушить работу отдельных элементов, приборов и систем производственного оборудования, а также вызвать поражение жизненно важных органов, что в конечном итоге повлияет на жизнедеятельность.

Степень ионизации среды проникающей радиацией характеризуется дозой радиации. Различают экспозиционную и поглощенную дозы радиации.

Экспозиционная доза выражает степень ионизации среды через суммарный электрический заряд ионов (каждого знака), образующихся в единице массы вещества в результате радиоактивного облучения. В настоящее время экспозиционную дозу рентгеновского и гамма-излучения принято измерять в рентгенах.

Рентген (Р) - такая доза рентгеновского и гамма излучения, при которой в 1 см3 сухого воздуха при температуре 0°С и давлении 760 мм рт. ст. образуется 2,08 млрд. пар ионов с суммарным зарядом каждого знака в I электрическую единицу электричества

(1Р=2,58×10-4 Кл/кг; I Кл/кг=3880 Р).

Поглощенная доза выражает степень ионизации среды через величину энергии, теряемой излучением в единице массы вещества на его ионизацию. В настоящее время в качестве единиц измерения поглощенной дозы распространения РАД и БЭР.

I РАД - это доза излучения, поглощение которой сопровождается выделением 100 эрг энергии в 1г вещества. I РАД=1,18Р или 1Р = 0.83 РАД.

При одной и той же поглощенной дозе различные виды излучений отличаются своим биологическим воздействием на живые организмы. Поэтому для оценки биологических последствий воздействия дозы различных излучений (в частности, нейтронов) используются специальная единица измерения - биологический эквивалент рентгена - БЭР.