Смекни!
smekni.com

Ядерная опасность. Семипалатинский полигон (стр. 5 из 11)

Ядерные взрывы

За последние 40 лет каждыйиз насподвергался облучению от радиоактивных осадков, которые образовались в резуль­тате ядерных взрывов. Речь идет не о тех радиоактивных осадках, которые выпали после бомбардировки Хиросимы и На­гасаки в 1945 году, а об осадках, связан­ных с испытанием ядерного оружия в атмосфере.

Максимум этих испытаний приходится на два периода: первый на 1954-1958 годы, когда взрывы проводили Велико­британия, США и СССР, и второй, более значительный, на 1961-1962 годы, когда их проводили в основном Соединенные Штаты и Советский Союз. Во время первого периода большую часть испыта­ний провели США, во время второго-СССР.

Эти страны в 1963 году подписали Договор об ограничении испытаний ядер­ного оружия, обязывающий не испыты­вать его в атмосфере, под водой и в космосе. С тех пор лишь Франция и Китай провели серию ядерных взрывов в атмосфере, причем мощность взрывов была существенно меньше, а сами ис­пытания проводились реже (последнее из них в 1980 году). Подземные испытания проводятся до сих пор, но они обычно не сопровождаются образованием радиоак­тивных осадков.

Часть радиоактивного материала вы­падает неподалеку от места испытания, какая-то часть задерживается в тропо­сфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь при­мерно на одной и той же широте. Находясь в воздухе в среднем около месяца (рис. 4.8), радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбра­сывается в стратосферу (следующий слой атмосферы, лежащий на высоте 10-50 км), где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.

Радиоактивные осадки содержат не­сколько сотен различных радионуклидов, однако большинство из них имеет ни­чтожную концентрацию или быстро рас­падается; основной вклад в облучение человека дает лишь небольшое число радионуклидов. Вклад в ожидаемую коллективную эффективную эквивалент­ную дозу облучения населения от ядерных взрывов, превышающий 1 %, дают только четыре радионуклида. Это углерод-14, цезий-137, цирконий-95 и стронций-90.

Дозы облучения за счет этих и других радионуклидов различаются в разные периоды времени после взрыва, поскольку они распадаются с различной скоростью. Так, цирконий-95, период полураспада которого составляет 64 суток, уже не является источником облучения. Цезий-137 и стронций-90 имеют периоды полу­распада ~ 30 лет, поэтому они будут давать вклад в облучение приблизительно до конца этого века. И только углерод-14, у которого период полураспада равен 5730 годам, будет оставаться источником радиоактивного излучения (хотя и с низкой мощностью дозы) даже в отдален­ном будущем: в 2000 годуон потеряет лишь 7% своей активности.

Годовые дозы облучения четко корре­лируют с испытаниями ядерного оружия в атмосфере: их максимум приходится на те же периоды (рис. 4.9, 4.10 и 4.11). В 1963 году коллективная среднегодовая доза, связанная с ядерными испытаниями, составила около 7% дозы облучения от естественных источников; в 1966 году она уменьшилась до 2%, а в начале 80-х-до 1 %. Если испытания в атмосфере больше проводиться не будут, то годовые дозы облучения будут становиться все меньше и меньше.

Все приведенные цифры, конечно, являются средними. На Северное полуша­рие, где проводилось большинство ис­пытаний, выпала и большая часть радио­активных осадков. Пастухи на Крайнем Севере получают дозы облучения от цезия-137, в 100-1000 раз превышающие среднюю индивидуальную дозу для ос­тальной части населения (впрочем, они получают большие дозы и от естественных источников - цезий накапливается в ягеле и по цепи питания попадает в организм человека). К несчастью, те люди, которые находились недалеко от испытательных полигонов, получили в результате значи­тельные дозы; речь идет о части населения Маршалловых островов и команде япон­ского рыболовного судна, случайно проходившего неподалеку от места взрыва.

Суммарная ожидаемая коллективная эффективная эквивалентная доза от всех ядерных взрывов в атмосфере, произве­денных к настоящему времени, составляет 30000000 чел-Зв. К 1980 году человечест­во получило лишь 12% этой дозы,

остальную часть оно будет получать еще миллионы лет.

Атомная энергетика

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное об­лучение населения. При нормальной работе ядерных установок выбросы ра­диоактивных материалов в окружающую среду очень невелики.

К концу 1984 года в 26 странах работало 345 ядерных реакторов, выра­батывающих электроэнергию. Их мощ­ность составляла 13% суммарной мощ­ности всех источников электроэнергии и была равна 220 ГВт (рис. 4.12). До сих пор каждые ~ 5 лет эта мощность удваива­лась, однако, сохранится ли такой темп роста в будущем, неясно. Оценки пред­полагаемой суммарной мощности атом­ных электростанций на конец века имеют постоянную тенденцию к снижению. Причины тому - экономический спад, реализация мер по экономии электро­энергии, а также противодействие со стороны общественности. Согласно по­следней оценке МАГАТЭ (1983г.), в 2000 году мощность атомных электростанций будет составлять 720-950 ГВт.

Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогаще­ния урановой руды. Следующий этап-производство ядерного топлива. Отрабо­танное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчи­вается цикл, как правило, захоронением радиоактивных отходов.

На каждой стадии ядерного топлив­ного цикла в окружающую среду по­падают радиоактивные вещества. НКДАР оценил дозы, которые получает население на различных стадиях цикла за короткие промежутки времени и за многие сотни лет. Заметим, что проведение таких оценок очень сложное и трудоемкое мы по атомной энергетике. Однако полученные оценки, конечно же, нельзя безоговорочно применять к какой-либо конкретной установке. Ими следует поль­зоваться крайне осторожно, поскольку они зависят от многих специально огово­ренных в докладе НКДАР допущений.

Примерно половина всей урановой руды добывается открытым способом, а половина - шахтным. Добытую руду ве­зут на обогатительную фабрику, обычно расположенную неподалеку. И рудники, и обогатительные фабрики служат источ­ником загрязнения окружающей среды радиоактивными веществами. Если рас­сматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе пере­работки руды образуется огромное коли­чество отходов—«хвостов». Вблизи дейст­вующих обогатительных фабрик (в основ­ном в Северной Америке) уже скопилось 120 млн. т отходов, и если положение не изменится, к концу века эта величина возрастет до 500 млн. т.

Эти отходы будут оставаться радио­активными в течение миллионов лет, когда фабрика давно перестанет сущест­вовать. Таким образом, отходы являются главным долгоживущим источником об­лучения населения, связанным с атомной энергетикой. Однако их вклад в облучение можно значительно уменьшить, если отвалы заасфальтировать или покрытьихполивинилхлоридом. Конечно, покрытия необходимо будет регулярно менять.

Урановый концентрат, поступающий с обогатительной фабрики, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях ядерного топлив­ного цикла.

Теперь ядерное топливо готово к использованию в ядерном реакторе. Су­ществует пять основных типов энергети­ческих реакторов: водо-водяные реакторы с водой под давлением (PressurisedWaterReactor, PWR), водо-водяные кипящие реакторы (BoilingWaterReactor, BWR), разработанные в США и наиболее распро­страненные в настоящее время; реакторы с газовым охлаждением, разработанные и применяющиеся в Великобритании и Франции; реакторы с тяжелой водой, широко распространенные в Канаде; водо-графитовые канальные реакторы, которые эксплуатируются только в СССР. Кроме реакторов этих пяти типов в Европе и СССР имеются также четыре реактора-размножителя на быстрых ней­тронах, которые представляют собой ядерные реакторы следующего поколе­ния.

Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов.

В последнее время наблюдается тен­денция к уменьшению количества выбро­сов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствова­ниями, частично - с введением более стро­гих мер по радиационной защите.

В мировом масштабе примерно 10% использованного на АЭС ядерного топ­лива направляется на переработку для извлечения урана и плутония с целью повторного их использования. Сейчас имеются лишь три завода, где занимают­ся такой переработкой в промышленном масштабе: в Маркуле и Ла-Аге (Франция) и в Уиндскейле (Великобритания). Самым «чистым» является завод в Маркуле, на котором осуществляется особенно стро­гий контроль, поскольку его стоки по­падают в реку Рону. Отходы двух других заводов попадают в море, причем завод в Уиндскейле является гораздо большим источником загрязнения, хотя основная часть радиоактивных материалов попада­ет в окружающую среду не при переработ­ке, а в результате коррозии емкостей, в которых ядерное топливо хранится до переработки.