Процедури і методи системного аналізу скеровані на пошук альтернативних варіантів вирішення проблем, визначення масштабів невизначеності у кожному з варіантів і їх порівняння за тими або іншими критеріями ефективності .
Основні положення системного аналізу можна сформулювати так:
1) процес прийняття рішення повинен починатися з виявлення і чіткого формулювання кінцевої мети, а також критеріїв, за якими можна оціни-ти її досягнення;
2) необхідно розглядати всю проблему як ціле, тобто як єдиний ком-плекс, і виявляти всі наслідки і внутрішні зв’язки кожного часткового рішення;
3) необхідно виявити і проаналізувати можливі альтернативні шляхи дося-гнення мети;
4) цілі окремих підсистем не повинні конфліктувати з метою всієї системи.
Центральною процедурою у системному аналізі є побудова загальної моделі (моделей), що відображають всі фактори і взаємозв’язки реальної ситуа-ції, котрі можуть проявитися у процесі втілення рішення. Отримана модель до-сліджується для визначення того, наскільки результат застосування будь-якого альтернативного варіанту близький до бажаного, як співвідносяться затрати ре-сурсів і часу у кожному з варіантів, наскільки альтернативні моделі чутливі до різних небажаних внутрішніх впливів.
За визначенням Аллена Ентховена: „Системний аналіз – це ніщо інше, як освічений здоровий глузд, якому слугують аналітичні методи. Ми застосову-ємо системний підхід до проблеми, намагаючись максимально широко досліди-ти поставлену задачу, визначити її раціональність і своєчасність, а далі забезпе-чити того, хто відповідає за прийняття рішення, такою інформацією, яка най-краще допоможе йому вибрати найефективніший шлях вирішення задачі”.
Присутність суб’єктивних елементів (знання, досвід, інтуїція, оцінка пере-ваг) зв’язана з об’єктивними причинами, котрі випливають з обмеженої можли-вості застосування точних кількісних методів до всіх аспектів складних про-блем.
Перед усім, основним і найбільш цінним результатом системного аналізу визнається не кількісна визначеність рішення проблеми, а покращення її ро-зуміння і виявлення суті різних шляхів рішення. Це розуміння і альтернатив-ні рішення проблеми виробляються спеціалістами і експертами та надаються відповідальним людям для їх конструктивного обговорення.
Системний аналіз включає методологію дослідження, виділення його етапів і обґрунтований вибір методики виконання кожного з етапів у конкретних умовах. Особливу увагу у таких роботах приділяється визначенню мети і моделі системи і їх формалізованому представленню.
Задачі дослідження системи можна розділити на задачі аналізу і задачі синтезу.
Задачі аналізу полягають у дослідженні особливостей і поведінки систем в залежності від їх структур, значень параметрів і характеристик зовнішнього середовища.
Задачі синтезу полягають у виборі структури і таких значень внутрішніх параметрів систем, щоб при заданих характеристиках зовнішнього середовища та інших обмеженнях, отримати задані властивості систем.
1.1Принципи системного підходу та типи структур
-Принцип остаточної глобальної мети: означає, що в системі все повинно бути спрямоване на досягнення призначення , підпорядковане глобальній меті. Будь-які зміни, удосконалення та управління повинні оцінюватися виходячи з того, що чи сприяють вони досягненню мети.
-Принцип єдності: сумісний розгляд системи і як цілого , і як сукупності компонент (елементів, підсистем, систему утворюваних відношень.
-Принцип зв’язаності: довільна компонента системи розглядається сумісно з її зв’язками з оточенням.
-Принцип модульності: вказує на можливість розгляду замість частини системи сукупності входів та виходів цієї частини, тобто дозволяє абстрагуватися від зайвої деталізації за умови збереження можливості адекватного описання системи.
-Принцип ієрархії: акцентує увагу на корисності відшукання або створення в системі ієрархічного характеру зв’язків між її елементами , цілями, модулями. У випадку відсутності ієрархії дослідник повинен вирішити , в якому порядку він буде розглядати складові системи та напрямок конкретизації своїх уявлень.
-Принцип функціональності: стверджує, що довільна структура тісно пов’язана з функціями системи та її складових , і створювати структуру необхідно після зрозуміння функцій системи
-Принцип розвитку: повинен закладатися при побудові штучних систем як здатність до вдосконалення, розвитку системи за умови збереження якісних особливостей. Структура системи та її функції повинні розглядатися сумісно з пріоритетом функцій над структурою.
-Принцип децентралізації: орієнтує на розумний компроміс між повною централізацією та наданням здатності реагувати на певні дії частинам системи. Система з повною централізацією буде негнучкою, нездатною до пристосування. Досягнення спільної мети в сильно децентралізованій системі може забезпечитися лише стійким механізмом регулювання, що не дозволяє сильно відхилятися від поведінки, що веде до досягнення спільної мети.
-Принцип невизначеності: стверджує, що в багатьох випадках працюють з системою, про не яку не все відомо, чи не все зрозуміло в її поведінці. Це
може бути система з невідомою структурою, непередбачуваним перебігом деяких процесів , зі значними відмовами.
Структура – це множина частин або форм , що знаходяться у взаємодії та специфічному порядку , необхідному для реалізації функцій. Структура системи – це стійка упорядкованість у просторі і в часі її елементів і зв’язків. Властивістю структури є можливість існування протягом певного часу за допомогою звязуючого пристосування для збереження елементів та їх відношень приблизно в одному і тому ж порядку, реагуючи при цьому на дії середовища. Типи структур: мережу, кістякову, ієрархічну; ті, що включають різні комбінації взаємозв’язків елементів.Мережна модель може використовуватися як для описання фактичних структурних зв’язків між елементами системи, або ж абстрактним функціональним представленням взаємодій між підсистемами. Ієрархія – це структура з підпорядкованістю , тобто з нерівноправними зв’язками – дії в одному напрямку виявляють набагато більший вплив, аніж в оберненому. Є два типи ієрархічних структур: деревоподібна та ромбовидна. Деревоподібна – є найпростішою для реалізації та аналізу. В майже всіх випадках в ній виділяються ієрархічні рівні – групи елементів, що знаходяться на однаковій відстані від головного елемента . Ромбовидна – приводить до множинної підпорядкованості, належності елементів нижнього рівня.
Є два типи ієрархічних структур: деревоподібна та ромбовидна. Деревоподібна – є найпростішою для реалізації та аналізу. В майже всіх випадках в ній виділяються ієрархічнірівні – групи елементів, що знаходяться на однаковій відстані від головного елемента . Структури цього типу є надзвичайно поширеними (ієрархія проектування складної програмної системи, ієрархія цілей у складній організаційній системі).
Ромбовидна – приводить до множинної підпорядкованості, належності елементів нижнього рівня. Приклади – участь одного технічного елемента в роботі більш ніж одного вузла, блока використання одних і тих самих даних або результатів вимірювань в різних завданнях.
Будь-яка ієрархія звужує можливості та гнучкість системи. Елементи нижнього рівня обмежуються домінуванням верхнього. Однак введення ієрархії різко спрощує створення та функціонування системи.
1.2Аналітичний підхід в науковому пізнанні та практиці
При аналітичному підході до дослідження систем цільовий аспект її функціонування практично не розглядається. Модель системи будується на rpyнтi вивчення окремих підсистем та елементів з наступним формулюванням локальних цілей, що відображають окремі сторони процесу моделювання.
Використовуючи аналітичний підхід, дослідник вивчає систему "зсередини", маючи обмежений горизонт, тобто в стані осягнути лише одну або в кращому разі декілька компонентів системи зі зв'язками між ними. Успіх та значення аналітичного методу полягає не лише в тому, що складне поділяється на все менші складові частини, а в тому, що з'єднавши ці частини відповідним чином, знову утворюється єдине ціле.
Аналітичний метод має величезне значення в науці i на практиці. Розклад функцій в ряди, розбиття неоднорідних областей на однорідні з наступним "зшиванням розв'язків" - в математиці; аналізатори спектрів, всілякі фільтри, дослідження атомів i елементарних частинок - в фізиці; анатомія та нозологія - в медицині; значна частина схемотехніки, конвеєрна технологія виробництва - все це служить ілюстрацією ефективності аналізу. Успіхи аналітичного методу привели до того, що самі поняття "аналіз" та "наукове дослідження" стали сприйматися як синоніми.
Аналітичний метод дозволяє досягнути найвищих результатів за умови, що ціле вдається розділити на незалежні одна від одної частини, оскільки в цьому випадку їх окремий розгляд дозволяє скласти правильне уявлення про їх вкладення в загальний ефект. Ідеалом, остаточною метою аналітичного методу є встановлення причинно-наслідкових зв'язків між явищами.
У випадку складних систем виключення на перший погляд "непотрібних" чи "нецікавих" взаємодій може суттєво порушити адекватність моделі і є в багатьох випадках принципово неможливим. Отже, не лише аналітичний метод неможливий без синтезу, тобто агрегування частин в структуру, але й синтетичний метод неможливий без аналізу, бо необхідна дезагрегація цілого для пояснення функцій частин. Аналіз і синтез доповнюють, але не замінюють один одного. Системне мислення суміщає обидва ці методи на основі розгляду призначення складної системи.
Основною операцією аналізу є декомпозиція - поділ цілого на частини. Задача розпадається на під задачі, система - на підсистеми, мета - на підцілі. При необхідності цей процес повторюється, що призводить до побудови ієрархічних деревоподібних структур - дерев декомпозиції. Звичайно, об'єкт аналізу є складним, слабо структурованим, погано визначеним, а тому операцію декомпозиції здійснює системний дослідник (СД-експерт), і отримані різними СД-ками результати будуть різними. Якість дерев декомпозиції залежатиме як від кваліфікації СД-ка, так і від застосованої методики декомпозиції. Операція декомпозиції є не чим іншим, як співставлення об'єкта аналізу з деякою моделлю, виділення того, що відповідає елементам моделі, тобто питання повноти декомпозиції є питанням завершеності моделі. Однак і сама модель-основа може відображати реальний об'єкт з різним ступенем деталізації.