3.Понятие бесконечности в искусстве
Понятие бесконечности присутствует и в искусстве.
Вариацией на эту тему являются и стихи английского поэта Уильямса Блэйка:
“В одном мгновенье видеть Вечность,
Огромный мир – в зерне песка
В едином миге – бесконечность
И небо – в чашечке цветка”.
Б. Паскаль писал о бесконечности: “Я вижу со всех сторон только бесконечности, которые заключают меня в себе как атом; я как тень, которая продолжается только момент и никогда не возвращается.
Бесконечность есть в отрывках стихотворений таких поэтов и ученых, как римского поэта и философа Тит Лукреция Кара.
“Нет краев у нее, и нет ни конца, ни предела,
И безразлично, в какой ты находишься части Вселенной.
Где бы ты не был, везде, с того места, что ты занимаешь,
Все бесконечной она остается во всех направленьях”.
Низами – среднеазиатский поэт вопрошал:
“Разве в мире бесконечном направленье есть?
Разве далям бесконечным измеренье есть?”
Немецкий поэт 18в. Альберт фон Галлер утверждал:
“Нагромождаю чисел тьму,
Мильоны складываю в гору,
Ссыпаю в кучу времена,
Миров бесчисленных просторы.
Когда ж с безумной высоты
Я на тебя взгляну, то ты -
Превыше не в пример
Всех чисел и всех мер:
Они лишь часть тебя”.
И здесь уместно вставить слова Максимилиана Волошина:
“Когда уйду я в бесконечность,
То мне откроется она,
Так ослепительно ясна,
Так беспощадна, так сурова,
И звездным ужасом полна”.
Иллюстрациями этого понятия могут служить и некоторые замечательные графические работы известного голландского “математического графика”, художника М.К. Эшера.[8] В этих работах Эшер, умело опираясь на математические конструкции применяемые в алгебре и геометрии, подчеркивает несовершенство и ограниченность нашей геометрической интуиции. Именно глубоким проникновением в природу геометрической бесконечности и объясняется сильное воздействие на зрителя “математических работ” Эшера.
На полотне можно изобразить лишь иллюзию бесконечности, но не саму бесконечность. Гравюра Эшера “Все меньше и меньше” представляет собой первую попытку изображения бесконечности. При приближении к центру окружности фигурки, заполняющие плоскость, уменьшаются, каждая последующая фигурка занимает площадь вдвое меньшую, чем предыдущая: в центре площадь их становится бесконечно малой, а количество бесконечно большой величиной. Такая конструкция является фрагментарной, т. к. она позволяет расширение новыми все более увеличивающимися фигурами.
Избежать фрагментарности и представить бесконечность во всей ее полноте внутри четко очерченной границе позволяет лишь метод, обратный только что рассмотренному.
Это такие гравюры как “Круговой предел 1, 2, 3”
В круговом пределе 3 вдоль каждой цепочки сохранена однородная ориентация фигур, рыбки плывут вереницей по дугам от края до края гравюры и так, что чем ближе к центру, тем фигуры становятся больше. Каждая цепочка подобна траектории ракеты, которая взмывает с одной из точек окружности и исчезает на противоположной стороне. При этом ни одна из фигурок цепочки не достигает граненой линии, за пределами которой “абсолютное ничто”.
Но сферическая вселенная и не может существовать без охватывающей ее пустоты не только потому, что понятие “внутри” предполагает понятие “снаружи”, но и потому, что в этом “ничто” воображаемые, но геометрически точно определенные центры дуг, образующие структуру сферического мира.
Да немало я потрудился, чтобы представить замкнутость... но зато я теперь убедился, что глаз и рука могут создать и объяснить все на свете, даже бесконечность не пугает их...”
Работы Эшера можно демонстрировать, когда говорим о симметрии, о трехмерном пространстве, при изучении правильных многогранников и т.д. и т.п.
Заключение
Понятие бесконечности, значение которого в современной системе познания столь невообразимо велико, зародилось в глубочайшей древности и при становлении прошло весьма сложный путь. Впервые это понятие обсуждается в школе элеатов: элеец Зенон вводит понятие актуально бесконечного.
Чтобы создать науку о движении — физику, Аристотель должен доказать возможность мыслить движение без противоречия. Для этого он вводит принцип непрерывности.
Таким путем Аристотель разрешает те трудности, которые возникают при допущении, что пространство и время состоят из бесконечного множества «неделимых», и получает возможность мыслить движение как непрерывный процесс, а не как сумму «продвинутостей». Принцип отношения имеет применение и в греческой астрономии, тоже не признающей актуально бесконечного. Архимед не допускает отношения между какой-либо величиной и тем, что величины не имеет (т. е. на нашем языке — нулем), а значит, не допускает бесконечности. Средневековая наука опиралась на теории, созданные еще в античности: геометрию Евклида, астрономическую систему Птолемея и физику Аристотеля. В эпоху Возрождения характерен острый интерес к понятию бесконечности. Оно не только не вызывает к себе недоверия, но, напротив, становится предметом специального исследования у ученых и философов. Бесконечность — концепция, используемая в математике, философии и естественных науках.
В процессе развития математики сформировались следующие подходы к этому понятию: арифметическая и геометрическая, потенциальная и актуальная бесконечности. Геометрический образ бесконечности – линия, вдоль которой можно двигаться с любой сколь угодно большой скоростью, но никогда не достичь ее конца которого нет. С физической точки зрения это утверждение означает приоритетность пространства над временем, а также, то, что форма существования пространства является бесконечной.
Бесконечность в философии, понятие, употребляемое в двух различных смыслах: качественная бесконечность, выражаемая в законах науки и фиксирующая универсальный (всеобщий) характер связей явлений; количественная бесконечность, выступающая как неограниченность процессов и явлений. Понятие бесконечности присутствует и в искусстве.
О бесконечности писали Б. Паскаль, У. Блэйк, Альберт фон Галлер и др. Иллюстрациями этого понятия могут служить и некоторые замечательные графические работы известного голландского “математического графика”, художника М.К. Эшера.
Таким образом, понятие бесконечности получила развитие и в науке и в искусстве. Она охватывает собой все существующее, и то, что уже познано человеком, и то, что предстоит познать в будущем. Она неизменно остается тождественной только самой себе, никаким образом не реагирует на конечную величину - она включает последнюю, и в то же время через конечные величины выражается.
Список использованной литературы
1.Архимед. Сочинения. М., 1962. С. 358-359.
2.Бурбаки Н. Очерки по истории математики. — М.: КомКнига, 2007.
3.Бурова И.Н. Развитие проблемы бесконечности в истории науки. - М.: Наука, 1987.
4.Евклид. Начала. Кн. I-VI. М., 1949. С. 142.
5.Егоров В.С. Философия открытого мира.- М., 2002.
6.Мауриц Э. Магия М.К. Эшера.- Арт - родник, 2007.
7.Садохин А.П. Концепции современного естествознания.- ЮНИТИ-ДАНА, 2008.
8.Стахов А.П. , Проблема бесконечности в математике // «Академия Тринитаризма», М., Эл.- № 77-6567.- 2006.
9.Трубникова Н.Н., Шульгин Н.Н. Существуют бесконечности, большие других бесконечностей, и бесконечности, других бесконечностей меньшие. — М., РОССПЭН, 2001.- С. 174.
10.Успенский П.Д. Новая модель Вселенной.- Изд-во Чернышева, 1993. - С. 463.
[1]Евклид. Начала. Кн. I-VI. М., 1949. С. 142.
[2]Архимед. Сочинения. М., 1962. С. 358-359.
[3] Трубникова Н.Н., Шульгин Н.Н. Существуют бесконечности, большие других бесконечностей, и бесконечности, других бесконечностей меньшие. — М., РОССПЭН, 2001.- С. 174.
[4]Стахов А.П., Проблема бесконечности в математике // «Академия Тринитаризма», М., Эл.- № 77-6567.- 2006.
[5] Бурбаки Н. Очерки по истории математики. — М.: КомКнига, 2007.
[6] Успенский П.Д. Новая модель Вселенной.- Изд-во Чернышева, 1993. - С. 463.
[7]Егоров В.С. Философия открытого мира.- М, 2002.
[8] Мауриц Э. Магия М.К. Эшера.- Арт-родник, 2007.