Смекни!
smekni.com

Философия и методология науки (стр. 51 из 80)

Познавательный подход: Ad-hoc-целостный подход (иногда этот подход включают в понятия «целостный подход»).

Необходимо пояснито особенности названных четырех видов свойств на при­мере целостных объектов материальной и идеальной природы.

Вопрос об ad-hoc-целостных свойствах не нуждается особо в пояснении и обосновании примерами, поскольку эти свойства не есть явление сущности познаваемого объекта они неимманентны ему. Данные свойства есть результат влияния большей целостности (системы) на данный объект как свою составляющую часть Можно сказать, что эти свойства выражают «конформизм» объекта по от­ношению к «силе» большей целостности.

Наиболее наглядным и показательным примером, показываю­щим специфику названных выше свойств, является область физико-химической биологии, связанная с исследованием совокупных свойств молекулярных образований высшей организации - биопо­лимеров типа ферментов, ДНК, РНК. Возьмем для примера пробле­мы познания комплекса свойств, присущих молекуле ДНК. Так, молекулу ДНК можно исследовать через свойства отдельных ее со­ставляющих атомов, природы отдельных химических и слабых (здесь физических) связей, функциональных групп, электрических зарядов отдельных фрагментов и т.д., т.е. на основании метода ре­дукции.

Наряду с этим можно исследовать свойства молекулы ДНК как целостного образования, свойства, не сводящиеся полностью к свойствам отдельных ее составляющих способность вступать в хи­мические взаимодействия с веществами определенных классов, об­ладать определенными седиментационными и реологическими ха­рактеристиками в соответствующих средах и др. Однако, нетрудно установить, что на основании метода редукции и целостного подхо­да, т е рассматривая молекулу ДНК как целостную молекулу и мо­лекулу, состоящую из набора элементов, мы не имеем возможности познать все присущие ей свойства Только тогда (и только тогда), когда мы будем исследовав молекулу ДНК как элемент в более высокоорганизованной системе (что не предписывается специально ни принципом целостности, ни, тем более, принципом редукции), мы можем раскрыть некоторые присущие ей высшие «метацелостные свойства». Для молекулы ДНК более высокоорганизованной систе­мой, в которой она функционирует как элемент, является система взаимосвязанных и регулируемых процессов метаболизма живой клетки

Подчеркнем, что речь идет об имманентных высших, т. е. «метацелостных», свойствах ДНК. Это хорошо видно из истории развития научных знаний о молекулярных составляющих живых организмов. Действительно, нуклеиновые кислоты и белковые тела были выде­лены из живых организмов в XIX в. и подвергались разнообразным исследованиям в изолированном виде, т.е. исследовались как хими­ческие объекты в химических экспериментальных ситуациях.

В результате к середине XX в. были раскрыты их структура как макромолекул и основные физико-химические свойства, но только в результате исследования функционирования этих молекулярных (химических) объектов в живой клетке были раскрыты их высшие информационные и регуляционные свойства. Другими словами, только в указанном выше случае мы получаем возможность обна­ружить заложенные в молекуле ДНК свойства как носителя генети­ческой информации и установить, что последовательность нуклеотидов не случайный набор групп определенной природы (азотистых оснований), а генетический код. Здесь именно на основании специ­фического познавательного подхода, эксплицируемого как «прин­цип контрредукции», мы получаем возможность познания высших, «метацелостных», свойств ДНК (которые, что важно подчеркнуть, присущи данному объекту как таковому, а не возникают у него только вследствие каких-либо воздействии в системе).

Здесь принцип контрредукции дает возможность для познания ряда сущностных свойств, имманентных объекту, а не только тех свойств, которые дополнительно появляются при включении объек­та в состав той или иной системы ввиду его неизбежной трансфор­мации, модификации и т. п. Так, например, установив свойства ДНК как матрицы с кодовой записью аминокислотной последовательно­сти, мы далее можем работать с изолированными ДНК и по генети­ческому коду расшифровать соответствующие аминокислотные по­следовательности у тех или иных белков и наоборот, по последова­тельности аминокислот изолированных белков определять последо­вательность нуклеотидов в ДКК. Более того, информационные и ре­гуляционные свойства молекул ДНК и РНК, биокаталитические и регуляционные свойства ферментов, познанные па основании метоконтрредукции в системах живой клетки, могут реализоваться в искусственных системах, которые и по материальному составу, и по организации отличаются от нативных («живых») систем.

Применение принципа контрредукции при рассмотрении его функционирования в сфере естествознания не ограничивается исследованием высших свойств объектов только в статистических материальных системах или системах с ограниченным временем акционирования (каковыми являются, например, искусственно организуемые химические процессы или процессы в отдельных конкретных организмах). Возможности метода более широки, так как под более высокоорганизованной системой в отношении к методу контрредукции следует понимать любую пространственно-временную, в том числе эволюционирующую, природную систему. Под пространственно-временной (или в частном случае пространст­венно-темпоральной) системой мы подразумеваем некоторую из­менчивую во времени систему (неорганическую, органическую, со­циальную и т. п.), которую по некоторым инвариантным признакам мы выделяем как некоторую целостность и определенный объект исследования. Для каждой такой системы можно ввести понятие элементарного отрезка времени, т. е. максимального временного ин­тервала, для которою рассматриваемые изменения в системе незна­чительны. Размерности этих отрезков для космологии, видимо, по­рядка тысяч лет и более, для геологи - порядка десятков и сотен лет, для микробиологии - порядка времени одной-двух генераций (порядка минут), для химической кинетики - от долей секунд до ча­сов, для истории общества и культуры - порядка десятков и сотен лет.

В пространственно-временных системах неизвестные высшие свойства исследуемого объекта будут проявляться вследствие нали­чия в системе не только актуальных материальных, но и временных, исторических причинно-следственных связей. Характерный пример, вскрывающий объективные основания и возможности метода контрредукции в системах названного типа, - учение о химической эволюции, учение о способностях молекулярных образований к самоорганизации, структурно-качественным усложнениям в естественно-исторических условиях вплоть до образования самооргани­зующихся предбиологических и биологических систем

В отношении нашего вопроса можно учесть то, что установле­ние принципиального свойства молекул - способности к самоорга­низация, химической эволюции - могло осуществиться только в результате контрредукции Действительно, эволюционное учение в биологии, зародившееся в ХIХ в., при ретроспективном рассмотре­нии эволюции живых организмов могло исходить только из простейших одноклеточных и их молекулярных (субклеточных) составляющих. Это обстоятельство совместно с идеями первичной эволю­ции Природы на уровне неорганической материи, развиваемыми в космологии, приводило к постановке проблемы пред биологической, т. е. химической эволюции Важно, что в историко-логическом про­цессе развития научною знания вначале была поставлена проблема химической эволюции, а лишь затем стали проводиться конкретные модельные исследования химических самоорганизующихся систем. Таким образом, установление высшего свойства молекул - способ­ности к самоорганизации вплоть до образования высокоструктури­рованных систем с пространственно-временной организацией - яви­лось результатом контрредукции - рассмотрения молекул в эволю­ционирующей естественно-исторической системе

Для рассмотрения четырех видов свойств возьмём теперь иде­альный естественный объект – язык. Для примера рассмотрим идио­матическое выражение «Лучше синица в руке, чем журавль в небе» Поскольку речь идет о неизвестных свойствах целого, то лучше себе представить иностранцев, которые хорошо знаю лексику, грамма­тику русского языка, но не знают литературного и фольклорного языка и при этом проводят исследование названной выше идиомы.

Если мы располагаем всеми частями но только ими, т. е. слова­ми лучше, руке, небе, в, чем, синица, в, журавль, - то мы можем кое-что сказать о целом. Например, что в выражении речь идет о синицах, журавлях, небе и т. п. Эти наши ограниченные, но не пус­тые смыслы (в данном контексте «свойства») целого и есть субцелостные свойства

Если нам представлено все высказывание «Лучше синица в ру­ках, чем журавль в небе», то мы можем понять (при условии, если мы не знаем более общий смысл идиомы) только букварный смысл этого выражения, - т.е., что синица в руке лучше журавля в небе (хотя зачем они нам нужны?). Этот буквальный смысл и будет цело­стным свойством данного выражения.

Если же мы (продолжаем представлять себя иностранцами, ко­торые не знают данной идиомы русского языка) будем исследовать это выражение во многих контекстах, т. е. в более сложной системе, чем само выражение как целое, то мы через восприятие инварианта смысла данного выражения в различных контекстуальных употреб­лениях поймем, что данное выражение имеет смысл более широкий, чем буквальный. Лучше в жизни стремиться к малому и доступному, чем к большому, но малодоступному. Этот смысл и будет метацелостным свойством исследуемого целого.

Наконец, если в каком-либо контексте данному выражению придается специальный смысл, то мы можем фиксировать ad-hoc-целостные свойства. Например, если сказать «Ошибочно считать, что синица в руке лучше, чем журавль в небе», то указанная оши­бочность не является ни буквальным смыслом выражения, ни его более общим (высшим) как идиомы, а относится только к данному контексту. Это и есть пример ad-hoc-целосгных свойства.