96.Револ-ия в естеств-и в конце XIX и начале XX в. и открытия в биологии. В Новое (17-18 вв) время сложилась мех-ская картина мира, утверждающая: вся Вселенная – сов-ость большого числа неизменных и неделимых ч-ц, перемещающихся в абсолютн. простр-ве и вр-ни, связанных силами тягот-я, подчиненных законам классич. мех-ки; природа выступает в роли простой машины, части к-ой жестко детерминированы; все процессы в ней сведены к мех-ским. Мех-ская картина мира сыграла во многом положительную роль, дав естественнонаучное понимание многих явлений природы. Таких представл-ий придерживались практически вес выдающиеся мыслители XV в. - Галилей. Ньютон, Лейбниц, Декарт. Для их творч-ва характерно построение целостной картины мироздания. Начиная с создания немецким мыслителем Иммануилом Кантом (1724-1804) работы «Всеобщая естественная история и теория неба» в естествознание проникают диалектические идеи. В XX в. диалектические идеи проникают в геологию и биологию. В области биологии эволюционные идеи высказывал франц. естествоиспытатель Ж.Б.Ламарк (1744-1829) в «Философии зоологии» и Ч.Р.Дарвин (1809-1882), создавший знаменитую работу «Происхождение видов путем естественного отбора, или Сохр-е благоприятствуемых пород в борьбе за жизнь» (1859). В 30-х г. XX в. ботаником М. Я.Шлейденом (1804-1881) и биологом Т. Шванном (1810-1882) была создана клеточ. теория строения растений и живых орг-змов. Эволюционные идеи, нашедшие отражение в биологии, геологии подрывали мех-скую картину мира. Этому способ-ли и исслед-я в обл-ти физики. В обл-ти биологии рус. физиологом растений и микробиологом Д.И.Ивановским (1864-1920) был открыт вирус и положено начало вирусологии. Получает дальнейшее разв-е генетика, в основе к-ой лежат законы Менделя и хромосомная теория наследст-сти американского биолога Т.Ханта (1866-1945). Амер. биохимик Дж. Уотсон (р. 1928) и англ. биофизик Ф. Крик (р. 1916) в 1953 г. создали модель структуры ДНК, что положило начало молекулярн. генетике.
95.Револ-ия в естеств-ии в конце XIX и начале XX в. и открытия в астрономии. В конце XIX - начале XX в. считалось, что научная картина мира практически построена, и если и предстоит какая-либо работа исследователям, то это уточнение некоторых деталей. Но вдруг последовал целый ряд открытий, к-ые никак в нее не вписывались. Значит-ные достиж-я были отмечены в области астрономии. Напомним, что под Вселенной (Метагалактикой) понимается доступная наблюд-ю и исслед-ю часть мира. Здесь сущ-ют большие скопления (100- 200 млрд.) звезд - галактики, в одну из к-ых -Млечный Путь - входит Солнеч. с-ма. Наша Галактика состоит из 150 млрд. звезд (светящихся плазменных шаров), среди к-ых Солнце, галактические туманности, космические лучи, магнитные поля, излуч-я. Солнеч. с-ма находится далеко от ядра Галактики, на ее периферии, на расстоянии около 30 световых лет. Возраст Солнечной системы около 5 млрд. лет. На основании «эффекта Доплера» (австрийс. физик и астроном) было устан-но, что Вселенная расшир-ся с очень высокой ск-стью. В 1922 г. мат-к и геофизик А. А. Фридман (1888-1925) нашел реш-е урав-й общей теории относ-сти для замкнутой нестационар. расширяющейся Вселенной, ставшее матем-ским фундаментом больш-ва соврем. космогонических теорий. Астрономы и астрофизики пришли к выводу, что Вселенная находится в состоянии непрерывной эволюции. Звезды, которые образуются из газово-пылевой межзвездной среды, в основном из водорода и гелия, под действием сил гравитации различаются по «возрасту». Причем образование новых звезд происходит и сейчас. В 1963 г. открыты квазары - астрономические тела, находящиеся вне пределов Галактики. В 1965 г. американские астрономы А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) обнаружили фоновое радиоизлучение». В 1967 г. были открыты пульсары - космические тела, являющиеся источниками радиоизлучения. Создается наука, нацеленная на изуч-е и освоение космического простр-ва - космонавтика. Ознаменовался этот период разв-я науки созд-ем кибернетики - науки об управл-ии, связи и переработке информации, теории с-м. Интенсивное разв-е промышленного произв-ва, космических исслед-й стимулирует дальнейшее совершен-ние технич. наук.
98. Принцип относительности в классической механике
Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику. Ее основу составляют три "аксиомы" - три знаменитых закона Ньютона. Уже первый из них, гласящий: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние", говорит об относительности движения и одновременно указывает на существование систем отсчета (они были названы инерциальными), в которых тела, не испытывающие внешних воздействий, движутся "по инерции", не ускоряясь и не замедляясь. Именно такие инерциальные системы имеются ввиду и при формулировке двух остальных законов Ньютона. При переходе из одной инерциальной системы в другую меняются многие величины, характеризующие движение тел, например, их скорости или формы траектории движения, но законы движения, то есть соотношения, связывающие эти величины, остаются постоянными. Чтобы описывать механические движения, то есть изменение положения тел в пространстве, Ньютон четко сформулировал представления о пространстве и времени. Пространство мыслилось как некий "фон", на котором развертывается движение материальных точек. Их положение можно определять, например, с помощью декартовых координат x, у, z, зависящих от времени t. Таким образом принимается, что время абсолютно. Эти формулы получили название преобразований Галилея. По Ньютону, пространство выступает как некая координатная сетка, на которую не влияет материя и ее движение. Время в такой "геометрической" картине мира как бы отсчитывается некими абсолютными часами, ход которых ничто не может ни ускорить, ни замедлить.
99, 100. Спец. теория отн-сти. В конце XIX - начале XX в. считалось, что науч. картина мира практически построена, и если и предстоит какая-либо работа исслед-телям, то это уточн-е нек-ых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались. Например, англ. физик Э. Рсзерфорд (1871-1937) эксперим-но устанав-ет, что атомы имеют ядро, в к-ом сосредоточена вся их масса В 1924 г. фран. физик Луи де Бройль(1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излуч-я, но и других микроч-ц. Но поистине революционный переворот в физич. картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший спец.(1905) и общую (1916) теорию отн-сти. В мех-ке Ньютона сущ-ют 2 абс-ные вел-ны – простр-во и время. Простр-во неизменно и не связано с материей. Время - абсолютно и никак не связано ни с простр-вом, ни с материей, Э. отвергает эти полож-я, считая, что простр-во и время органически связаны с материей и между собой. Тем самым задачей теории отн-сти стан-ся опред-е законов 4-хмерного простр-ва, где 4-ая коорд-та -время. Э., приступая к разраб-ке своей теории, принял в кач-ве исходных два полож-я; ск-сть света в вакууме неизменна и одинакова во всех с-мах, движущихся прямолинейно и равномерно друг отн-но друга, и для всех инерциальных с-м все законы природы одинаковы, а понятие абс-ной ск-ти теряет знач-е, так как нет возмож-сти ее обнаружить. Говоря об открытии спец. теории отн-сти, нельзя не вспомнить нидерландс. физика А. Лоренца {1853-1928), к-ый в 1892 г. вывел урав-е (получившее назв-е «преобраз-я Лоренца»), дающее возмож-сть устан-ть, что при переходе от одной инерциальной с-мы к другой м. изменяться знач-я вр-ни и размеры движущеюся тела в направл-и ск-ти движ-я. А крупнейший франц. мат-к и физик Анри Пуанкаре (1854-1912), к-ый и ввел назв-е «преобраз-е Лоренца», первым начал польз-ться термином «принцип отн-сти», незав-мо от Э-на развил мат-скую ст-ну этого принципа и практически одновр-но с ним показал неразрыв. связь между энергией и массой.
101. Модель эволюции Вселенной
Вселенную в целом изучает космология – наука о космосе. Космология открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого. Выводы космологии называются моделями происхождения и развития Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенной на основе общей теории относительности и релятивистской теории тяготения. В основе этой модели лежат два предположения: 1. свойства Вселенной одинаковы во всех ее точках (одноточность) и направлениях (изотропность); 2. наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы. Из теории относительности следует, что искревленной пространство не может быть стационарным: оно должно или расширяться или сжиматься.
102. Красное смещение, его сущность и значение Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Согласно обнаруженному эффекту Доплера, при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн. Для всех далеких источников света красное смещение было зафиксировано, причем чем дальше находился источник, тем в большей степени красное смещение оказалось пропорциональным расстоянию до источника. Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами. Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем 12-18 млрд. леи назад. Рождение Вселенной из «ничего» означает с современной научной точки зрения ее самопроизвольное возникновение из вакуума, когда в отсутствие частиц происходит случайная флуктуация. Выходит, что до образования Вселенной не было ни пространства, ни времени.