Интеллектуальные причины софизма заключаются в преобладании в уме лица, поддающегося софизму, ассоциаций по смежности над ассоциациями по сходству, в отсутствии развития способности управлять вниманием, активно мыслить, в слабой памяти, непривычке к точному словоупотреблению, бедности фактических знаний по данному предмету, лености в мышлении (ignava ratio). Обратные качества, разумеется, являются наиболее выгодными для лица, защищающего софизм: обозначим первые отрицательные качества через b, вторые соответствующие им положительные через а.
Сюда относятся трусость в мышлении — боязнь опасных практических последствий, вытекающих от принятия известного положения; надежда найти факты, подтверждающие ценные для нас взгляды, побуждающая нас видеть эти факты там, где их нет, любовь и ненависть, прочно ассоциировавшиеся с известными представлениями. Желающий обольстить ум своего соперника софист должен быть не только искусным диалектиком, но и знатоком человеческого сердца, умеющим виртуозно распоряжаться чужими страстями для своих целей. Обозначим аффективный элемент в душе искусного диалектика, который распоряжается им как актёр, чтобы тронуть противника, через с, а те страсти, которые пробуждаются в душе его жертвы и омрачают в ней ясность мышления через d. Аrgumentum ad homuiem, вводящий в спор личные счеты, и argumentum ad populum, влияющий на аффекты толпы, представляют типичные софизмы с преобладанием аффективного элемента.
При обмене мнений мы воздействуем не только на ум и чувства собеседника, но и на его волю. Во всякой аргументации (особенно устной) есть элемент волевой — императивный — элемент внушения. Категоричность тона, не допускающего возражения, определенная мимика e действуют неотразимым образом на лиц, легко поддающихся внушению, особенно на массы, с другой стороны, пассивность f слушателя особенно благоприятствует успешности аргументации противника. Таким образом, всякий софизм предполагает взаимоотношение между шестью психическими факторами: a + b + c + d + e + f. Успешность софизма определяется величиной этой суммы, в которой (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы. Прекрасный психологический анализ софистики дает Шопенгауэр в своей "Эристике" (перевод книги Д. Н. Цертелева). Само собой разумеется, что логические, грамматические и психологические факторы теснейшим образом связаны между собой.
5 есть 2+3 («два и три»). Два — число чётное, три — нечётное, выходит, что пять — число и чётное и нечётное.
«Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».
«Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».
«Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего»
«Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».
«Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога».
-1>1
Дана дробь: 1/Х. Как известно, она возрастает с уменьшением знаменателя
Поэтому, т.к. ряд 5, 3, 1, -1, -3, -5 убывающий, то ряд вида 1/Х=1/5, 1/3, 1, -1, -1/3, -1/5 и т.д. есть возрастающий. Но в возрастающем ряду каждый последующий член больше предыдущего, а это значит: 1/3>1/5, 1>1/3, -1>+1...
2=1
1)Х2-X2=X2-X2; (X+X)(X-X)=X(X-X); сокращаем: X+X=X; 2X=X; 2=1.
2) Х=1; X2=X; X2-1=X-1; X+1=1, но т.к. Х=1, то 2=1.
Парадоксы математические
Здесь мы поговорим о парадоксах в разделе математики. И вот, действительно, самое парадоксальное - это то, что в математике вообще есть парадоксы.
Парадокс несоизмеримости величин
Это явление имело место в древности, когда людям были знакомы только рациональные числа.
Две однородные величины, например, длины, площади или объемы, соизмеримы, если имеется их общая мера, т.е. если существует такая однородная с ними величина, которая укладывается в них целое число раз (общий делитель). Полагалось, что все вышеперечисленные величины соизмеримы.
Но вдруг оказалось, что диагональ квадрата и его сторона не имеют такой общей меры, и их частное нельзя было выразить с помощью известных чисел. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин может быть измерена и количественно точно определена, а их отношение - нет. К примеру, если возьмем сторону квадрата и начнем ее откладывать на диагонали, то обнаружим, что она укладывается только один раз и остается остаток. Тогда, если мы уложим остаток в сторону квадрата, то все будет ОК. Но и он не умещается. Далее полученный остаток не равный 2 не умещается в остаток не равный 1 и так далее.
В результате это отношение было выражено как корень квадратный из 2. Позднее нашли и другие несоизмеримые величины, такие как отношение длины окружности к диаметру и площади круга к площади квадрата, построенному на радиусе (оба равняются числу π).
Т.к. не находилось физического истолкования этих чисел, которое находилось для рациональных (самое банальное - две коровы, высота сооружения - тридцать три целых и половина камня), то греки придумали иррациональные, т.е. "бессмысленные", числа внедрить в геометрию, обозначать ими длины определенных отрезков, а не числа.
Парадокс бесконечно малых величин
Математический кризис в этой области существовал в период XVII - XVIII веков.
Бесконечно малые - это переменные величины, стремящиеся к нулю, или, если быть точнее, к пределу, равному нулю. Проблема состояла в их туманном понимании: то они рассматриваются как числа равные нулю, то как ему неравные. Причем, при таком подходе, люди рассматривали их как постоянные величины. Тогда из этого и из названия таких величин следует, что бесконечное является чем-то завершенным.
Кризис перестал быть таковым после создания теории пределов в начале XIX века французским математиком Огюстеном Луи Коши (1789 - 1857). С того момента бесконечно малые величины рассматриваются как постоянно изменяющиеся, а не постоянные, стремящиеся к пределу, но никогда его не достигающие. Постоянно изменяющиеся числа!
Парадокс Рассела
Парадокс связан с теорией множеств.
В письме от 16 июня 1902 года Готтлобу Фреге, уже завершавшему свой трехтомный труд, частью изданный, "Обоснования арифметики", венчавший усилия логицистов, Бертран Артур Уильям Рассел (1872 - 1970) сообщил о том, что обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента), указывая на противоречивость исходных позиций Фреге, тем самым чуть-чуть его обломав. Парадокс имеет n-ое количество вариаций.
Например, "каталог всех нормальных каталогов".
Каталоги подразделяются на два вида: 1) нормальные, которые в числе перечисленных в них каталогов не упоминают себя, и 2) ненормальные, которые входят в число перечисляемых ими каталогов.
Библиотекарю дается задание составить каталог всех нормальных каталогов и только нормальных каталогов. Должен ли он при составлении своего каталога его упомянуть? Если он его не упомянет, то составленный им каталог будет нормальным. Но такой каталог должен упомянут, а тогда это уже ненормальный каталог, и из списка должен быть вычеркнут. Библиотекарь не может ни упомянуть, ни не упомянуть свой каталог.
Теперь расскажем о вариациях этого парадокса. Начнем с более простого и известного.
Парадокс парикмахера (приписывается также Бертрану Расселу)
В некой деревни (некотором взводе и т.д.), в которой живет один-единственный парикмахер, был издан указ: "Парикмахер имеет право брить тех и только тех жителей деревни, которые не бреются сами". Может ли парикмахер брить самого себя?
Парадокс "мэр города"
Каждый мэр города живет или в своем городе, или вне его. Был выделен один специальный город, где бы жили мэры, не живущие в своих городах. Где должен жить мэр этого специального города?
Парадокс Кантора (1899)
Согласно одной из теорем немецкого математика Георга Кантора (1845 - 1918), развившего уже упомянутую теорию множеств, не существует самого мощного множества. Сие ввиду того, что для любого сколь угодно мощного множества можно указать еще более мощное. С другой стороны, интуитивно очевидно, что множество всех множеств должно быть самым мощным, ведь оно включает в себя все возможные множества.
Другими словами, пусть множество всех множеств M содержит в себе множество всех своих подмножеств (ведь оно же множество всех множеств). Если первое имеет мощность m, то мощность второго 2m, что больше m. Следовательно, множество M не содержит множество всех своих подмножеств, а, значит, не может быть множеством всех множеств.