Смекни!
smekni.com

Модальная логика. Вероятностная логика (стр. 2 из 2)

Р (А)=

В ХХ в. сначала Р. Мизес, а затем Г. Рейхенбах обратили внимание на то, что часто интересуемые нас события опосредованы такой массой обстоятельств, что учесть их и априорно предсказать, с какой вероятностью из них будут вытекать эти события, не представляется возможным. Поэтому на практике приходится ограничиваться приближенной оценкой вероятности, получаемой из обобщения ряда наблюдений или физических экспериментов. Вероятность события А, т.е. Р (А), по Мизесу и Рейхенбаху представляет собой отношения числа m появления события А в n наблюдениях или экспериментов, т.е.

Р (А)=

Формулы вычисления вероятности события А при первом и при втором подходах совпадают. Но смысл их совершенно различен. При первом подходе вероятность вычисляетсяаpriori (до опыта), при втором apasteriori (после опыта), т.е. статистически. При первом подходе вероятностная логика может рассматриваться как расширение логики модальной, при втором – логики индуктивной.

В аксиоматической теории вероятностей вопрос о том, как определяются вероятности основных событий, не играет роли. В основу этой теории, развитой С.Н. Бернштейном, А.Н. Колмогоровым, А.Я. Хичиным лежит некоторая система аксиом, указывающая основные правила составления вероятностей сложных событий. Произведением событий А и В называется событие «А и В», суммой – событие «А или В» и т.д. вероятностью события называется число Р обладающее следующими свойствами: 0≤р(A)≤1; р (1)=1; р(0)=0; если АÌВ, то Р(А) ≤ Р (В); если АÇВ=0, то р (А или В)= Р(А) + Р (В) и т.д.

Аксиоматическое построение теории вероятности превращает ее в раздел чистой математики.


Литература

1. Логика. К. – Хатнюк В.С. 2005 г.

2. Логика – искусство мышления. Тимирязев А.К. – К. 2000 г.

3. Философия и жизнь – журнал – К. 2004 г.

4. История логики и мышления – Касинов В.И. 1999.

5. Логика и человек – М. 2000.

6. Философия жизни. Матюшенко В.М. – Москва – 2003 г.

7. Философия бытия. Марикова А.В. – К. 2000 г.