Смекни!
smekni.com

Логика. Суждение. Умозаключение (стр. 4 из 5)

2. Неопределенное. Прим: «светает», «больно» и тому подобное.

Сказуемое P (предикат) – то, что мы высказываем (3 вида суждений):

· Повествовательные – это суждение относительно событий, состояний, процессов или деятельности скоропроходящих. Прим: «Роза в саду цветет».

· Описательные – когда одному или многим предметам приписывается какое-нибудь свойство. Субъектом всегда является определенная вещь. Пример: «Огонь горяч», «снег бел».

Отношение между подлежащим и сказуемым:

1. Суждения тождества – понятия субъекта и предиката имеют один и тот же объем. Прим: «всякий равносторонний треугольник есть равноугольный треугольник»

2. Суждения подчинения – понятия с менее широким объемом подчиняется понятию с более широким объемом. Прим: «Собака есть домашнее животное»

3. Суждения отношения - именно пространства, времени, отношения. Прим: «Дом находится на улице»

Фигурами силлогизма называются формы силлогизма, отличающиеся расположением среднего термина в посылках:

Фигура 1 Фигура 2 Фигура 3 Фигура 4
Бо́льшая посылка: M–P P–M M–P P–M
Меньшая посылка: S–M S–M M–S M–S
Заключение: S–P S–P S–P S–P

Каждой фигуре отвечают модусы – формы силлогизма, различающиеся количеством и качеством посылок и заключения. Модусы изучались ещё средневековыми школами, и для правильных модусов каждой фигуры были придуманы мнемонические имена:

Фигура 1 Фигура 2 Фигура 3 Фигура 4
Barbara Cesare Darapti Bramantip
Celarent Camestres Disamis Camenes
Darii Festino Datisi Dimaris
Ferio Baroco Felapton Fesapo
Bocardo Fresison
Ferison

в) Условное и разделительно – категорическое умозаключение

Чисто условным называется умозаключение, обе посылки кото­рого являются условными суждениями.

Схема чисто условного умозаключения:

-» q) ^ (q-> г) р->г

Вывод в чисто условном умозаключении основывается на прави­ле:следствие следствия есть следствие основания.

Умозаключение, в котором заключение получается из двух услов­ных посылок, относится к простым. Однако заключение может сле­довать из большего числа посылок, которые образуют цепь услов­ных суждений. Такие умозаключения называются сложными.

Условно-категорическим называется умозаключение, в кото­ром одна из посылок –условное, а другая посылка и заключение – категорические суждения.

Это умозаключение имеет два правильных модуса: 1) утверждаю­щий и 2) отрицающий.

1. В утверждающем модусе посылка, выражен­ная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия;

рассуждение направлено от утверждения истинности основания к утверждению истинности следствия.

2. В отрицающем модусе посылка, выраженная категорическим суждением, отрицает истинность следствия услов­ной посылки, а заключение отрицает истинность основания. Рассуж­дение направлено от отрицания истинности следствия к отрица­нию истинности основания.

Из четырех модусов условно-категорического умозаключе­ния, исчерпывающих все возможные комбинации посылок, досто­верные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законы логики и называются правильными модусами условно-категорического умо­заключения. Эти модусы подчиняются правилу: утверждение осно­вания ведет к утверждению следствия и отрицание следствия – к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходи­мостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.

г) Условно – категорическое умозаключение: правильные и

неправильные модусы

Формула ((а - Ь) л Ь) -» а (3) не является законом логики. Она означает, что нельзя достоверно умозаключить от утверждения следствия к утверждению основания. Люди иногда неправильно умозаключают так: Если бухта замерзла, то суда не могут входить в бухту. Суда не могут входить в бухту. Бухта замерзла. Заключение будет лишь вероятностным суждением, то есть вероятно, что бухта замерзла, но возможно и то, что дует сильный ветер, или бухта заминирована, или существует другая причина, по которой суда не могут входить в бухту. Вероятностное заключение получится и в таком умозаключении: Если данное тело – графит, то оно электропроводно. Данное тело электропроводно. Вероятно, данное тело – графит. Второй вероятностный модус. Это второй модус, не дающий достоверного заключения. Структура его:

Если а, то Ь. Не-а._____ Вероятно, не-Ь. Схема: а -» Ь ~а Вероятно, Ъ

Формула ((а -» Ь) л a) -» b (4) не является законом логики. Она означает, что нельзя принимать заключение за достоверное, умозаключая от отрицания основания к отрицанию следствия.Некоторые врачи ошибочно рассуждают так: Если человек имеет повышенную температуру, то он болен. Данный человек не имеет повышенной температуры.____ Данный человек не болен.

Учащиеся в школе также допускают логические ошибки при построении умозаключений. Вот пример: Если тело подвергнуть трению, то оно нагреется. Тело не подвергли трению. Тело не нагрелось.

Заключение здесь только вероятностное, но не достоверное, ибо тело могло нагреться по какой-либо другой причине (от солнца, в печи и так далее).

Заметим, что приведение такого рода примеров вполне достаточно для того, чтобы показать, что формы умозаключений, выражаемые формулами (3) и (4), неправильны. Но никакое количество примеров применения форм, соответствующих формулам (1) и (2), не в состоянии – если мы оперируем только примерами – обосновать их логической правильности. Для такого обоснования требуется уже некоторая логическая теория. Такая теория, фактически отсутствующая в традиционной логике, содержится в алгебре логики. Если формула, в которой конъюнкция посылок и предполагаемое заключение соединены знаком импликации, не является тождественно-истинной, то есть не выражает закона логики, то в умозаключении заключение не является достоверным. С помощью табличного метода можно доказать, что колонки таблицы 1, соответствующие формулам (1) modus ponens и (2) modus tollens выражают законы логики, а это означает, что modus ponens и modus tollens представляют собой логически правильные формы умозаключений.

((а -» Ь) л Ь) -» а и ((а -* Ь) л ~а) -» Ъ не являются тождественно- истинными высказываниями, то есть законами логики.

Если умозаключают от утверждения следствия к утверждению основания, то можно прийти к ложному заключению вследствие множественности причин, из которых может вытекать одно и то же следствие. Например, выясняя причину заболевания человека, надо перебрать все возможные причины: простудился, переутомился, был в контакте в бациллоносителем и так далее.

д) Условно – разделительное умозаключение. Сложные и простые

модусы

Умозаключение, в котором одна посылка условное, а другая – разделительное суждения, называется условно-разделительным, или лемматическим.

Разделительное суждение может содержать две, три и большее число альтернатив, поэтому лемматические умозаключения делятся на дилеммы (две альтернативы), трилеммы (три альтернативы) и так далее.

Различают два вида дилемм: кон­структивную (созидательную) и деструктивную (разрушительную), каждая из которых делится на простую и сложную.

В простой конструктивной дилемме условная посылка содер­жит два основания, из которых вытекает одно и то же следствие. Разделительная посылка утверждает оба возможных основания, за­ключение утверждает следствие. Рассуждение направлено от ут­верждения истинности оснований к утверждению истинности след­ствия.

Схема простой конструктивной дилеммы:

(р-»г)^(q->г),рvq

В сложной конструктивной дилемме условная посылка содер­жит два основания и два следствия. Разделительная посылка утверж­дает оба возможных следствия. Рассуждение направлено от утверж­дения истинности оснований к утверждению истинности следствий.

Схема сложной конструктивной дилеммы:

(p->q)^(r-»s), pvr

qvs

В простой деструктивной дилемме условная посылка содержит одно основание, из которого вытекает два возможных следствия. Разделительная посылка отрицает оба следствия, заключение отри­цает основание. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности основания.

Схема простой деструктивной дилеммы:

(p->q)^(p-»r),1qv1r

1p

В сложной деструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка отрицает оба следствия, заключение отрицает оба основания. Рассуждение направлено от отрицания истинности следствий к отрицанию истин­ности оснований.

Схема сложной деструктивной дилеммы:

(p-»q)^(r->s),1qv1s

1pv1r

е) Сокращенный силлогизм

Силлогизм, в котором выражены все его части – обе посылки и заключение, называется полным. Однако на практике чаще использу­ются силлогизмы, в которых одна из посылок или заключение явно не выражаются, а подразумеваются.

Силлогизм с пропущенной посылкой или заключением называет­ся сокращенным силлогизмом, или энтимемой.

Энтимема в переводе с греческого буквально означает «в уме». Широко используются энтимемы простого категорического сил­логизма, особенно выводы по первой фигуре. Например: «Н. совер­шил преступление и поэтому подлежит уголовной ответственности». Здесь пропущена большая посылка: «Лицо, совершившее преступ­ление, подлежит уголовной ответственности». Она представляет собой общеизвестное положение, формулировать которое необяза­тельно.