4. класс А и класс В не имеют общих элементов. Тогда разность А- В = А, т.к.всякий элемент класса А не является элементом класса В. Например, разность класса « стол» (А) и класса «стул» (В) равна классу «стол» (А)
6 если объем класса А меньше объема класса В, то в результате вычитания получим пустой класс, т.к. нет элементов класса А, которые не являются элементом класса В. Например, разность класса «личное местоимение» (А) и «местоимение» (В) дает пустой класс.
Законы. Дополнение к классу А.
Дополнением к классу А называется класс А, который будучи сложенным с А, дает рассматриваемую область предметов, а в пересечении с классом А дает , т.е. для которого А+ А=1 и А* А=0. откуда А=1- А, поэтому операцию дополнения к классу А можно рассматривать как частный случай операции «вычитания». Если от класса целых чисел (1) отнять класс четных чисел (А), то мы получим класс нечетных чисел (т.е. А 1, поскольку всякое целое число четное или нечетное и нет таких четных чисел, которые были бы нечетными). Заштрихованная часть на рисунке обозначает дополнение к А, т.е. А.
Определение понятий, его структура, виды, правила и возможные ошибки
Значение определений в познании. ( примеры, задания)
Определение (или дефиниция) понятия есть логическая операция, которая раскрывает содержание понятия либо устанавливает значение термина.
С помощью определения понятий мы в явной форме указываем на сущность отражаемых в понятии предметов, раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других так, например, давая определение понятия «трапеция», мы отличаем его от других четырехугольников, например от прямоугольника или ромба. «Трапеция»-четырехугольник, у которого 2 стороны параллельны, а 2 другие- не параллельны.
РЕАЛЬНЫЕ И НОМИНАЛЬНЫЕ ОПРЕДЕЛЕНИЯ
Если определяется предмет, то определение будет реальным. Если определяется термин, обозначающий предмет, то определение будет номинальным. С помощью номинальных определений вводятся также новые термины, краткие имена взамен более сложных описаний предметов. Например, «навыком называют такое действие, в составе которого отдельные операции стали автоматизированными в результате упражнений».
Путем номинальных определение вводятся и знаки, заменяющие термины. Например, «конъюнкция обозначается знаками или &», «тангенс угла обозначается как ...» и т. д.
Определения делятся на явные и неявные. Явные определения- это такие, в которых даны и и между ними устанавливается некоторое отношение равенства, эквивалентности, где -определяемое понятие, т. е. понятие, посредством которого оно определяется. Самое распространенное явное определение- определение через ближайший род и видовое отличие. В нем устанавливаются существенные признаки определяемого предмета.
Пример.«Правильный многоугольник- многоугольник, у которого все стороны конгруэнтны и все углы равны».Признак, указывающий на тот круг предметов, из числа которых нужно выделить множество предметов, называется родовым признаком или родом.
В приведенном примере родовым является понятие «многоугольник».
Признаки, при помощи которых выделяется определенное множество предметов из числа предметов, соответствующих родовому понятию, называется видовым отличием. При определении понятия видовых признаков (отличий) может быть 1 или несколько.
ПРАВИЛА ЯВНОГО ОПРЕДЕЛЕНИЯ. ОШИБКИ ВОЗМОЖНЫЕ.
1. Определение должно быть соразмерным, т.е. объем определяющего понятия должен быть равен объему определяемого понятия. . Это правило часто нарушается, в результате чего возникают логические ошибки в определении. Типы логических ошибок:
а) Широкое определение, когда . Пример, «лошадь- млекопитающее и позвоночное животное».
б) Узкое определение, когда . Н-р, «совесть- это осознание человеком ответственности перед самим собой за свои поступки»
в) Определение в одном отношении широкое, в другом- узкое. . и . Например, «бочка- сосуд для хранения жидкостей». С одной стороны, это широкое определение, т.к. сосудом для хранения жидкостей может быть чайник, ведро и т.д.; с другой стороны, это узкое определение, т.к. бочка пригодна для хранения и твердых тел, а не только жидкостей.
2. Определение не должно содержать круга. Круг возникает тогда, когда определяется через , а был определен через . Такие определения носят название тавтологий. Например, «закон есть закон», «масляное масло», «трудоемкий труд», «заданная задача», «поиграем в игру».
3. Определение должно быть четким, ясным. Это правило означает, что смысл и объем понятий, входящих в, должны быть свободными от двусмысленности; не допускается подмена их метафорами, сравнениями и т.д.
Неявные определения. В отличии от явных определений, имеющих структуру , в неявных определениях место занимает контекст, или набор аксиом, или описание способа настроения определяемого объекта.
Контекстуальное определение позволяет выяснить содержание незнакомого слова, выражающего понятие через контекст, не прибегая к словарю для перевода, если текст дан на иностранном языке.
Значения неизвестных в уравнениях даны в неявном виде. Если дано уравнение первой степени, например 10-y=3, или дано квадратное уравнение, например, x-7x+12=0, то решая их и находя значение корней этих уравнений, мы даем явное определение для y(y=7) и для x(x=4 и x=3).
Индуктивные определения характеризуются тем, что определяемый термин используется в выражений понятия, которое ему приписывается в качестве его смысла . примером индуктивного определения является определение понятия «натуральное число» с использованием самого термина «натуральное число»:
2. 1- натуральное число 3.если н- натуральное число, то н=1 – натуральное число.
4. никаких натуральных чисел, кроме указанных в пунктах 1 и 2 нет.
С помощью этого индуктивного определения получается натуральный ряд чисел: 1, 2,3,4 … таков алгоритм построения ряда натуральных чисел.
Итак, определение понятия можно сформулировать после всестороннего изучения предмета. Необходимо изучение предмета не в статике, а в динамике, в развитии.
Уточнение понятий, правильное раскрытие их содержания и объема имеет важное значение не только в создании научной терминологии, но и ри уточнении смысла слов в рассуждении.
Роль определений понятия в науке связана с тем, что определения являются существенным моментом в познании мира.
Суждение как форма мышления. Суждение и предложение. Логика вопросов и ответов
Суждение – форма мышления, в которой что-либо утверждается или отрицается о существовании предметов . связях между предметами и его свойствами или об отношениях между предметами. утверждается или отрицается наличие у предмета какого-либо признака
Примеры; «ледоколы существуют», «киев больше Тулы», «некоторые деревья не являются лиственными».если в суждении у и это соответствует действительности, то суждение истинно.
Например: «10 больше 3», «все ужи пресмыкающие». В противном случае суждение ложно.
Наша обычная логика является 2-х значной: суждение либо истинно, либо ложно.
В трехзначной логике: суждение может быть либо истинным, либо неопределенным. Например, «на марсе есть жизнь» не является ни истинным, ни ложным; оно неопределенно.
В простом суждении имеются субъект, предикат, связка и квантор.
Субъект суждения (S) –это понятие о предмете суждения. Предикатами (Р) суждения называются понятие о признаке предмета, рассматриваемом в суждении. Связка может быть выражена одним словом или тире, или простым согласованием слов (собака лает, дождь идет). Перед субъектом суждения иногда стоит квантор: «все», «ни один», «некоторые» и др. квантор указывает, относиться ли суждение ко всему объему понятия, выражающего субъект, или к его части. Простые суждения о которых шла речь, называются ассерторическими.
Суждение и предложение
Понятия в языке выражаются, одним словом или группой слов. Суждения выражаются повествовательными предложениями, которые содержат какое- то сообщение, информацию. Например, «ни один дельфин не является рыбой».
По цели высказывания предложения делятся на повествовательные, побудительные и вопросительные.
Вопросительные предложения не содержат в своем составе суждения, т. к. в них ничего не утверждается, не отрицается и они не истинны и не ложны. Если же в предложении выражен риторический вопрос4 например: «кто не хочет счастья?», «кто из вас не любит стихов А.С. Пушкина?»,то в нем содержится суждение, т.к. налицо утверждение, уверенность, что «все хотят счастья».
Побудительные предложения выражают побуждение собеседника к совершению действия. Побудительное предложение не содержит суждения (подожди меня!), хотя в них что-то утверждается или отрицается. Но предложения, в котором сформулированы воинские команды, приказы, призывы или лозунги выражают суждения.
Односоставные безличные предложения (знобит, подморозило), назывные предложения (утро, осень) и некоторые виды повествовательных предложений (дальний восток находится от нас далеко) является суждениями лишь при рассмотрении их в контексте и при уточнении: «кто он?», «от кого – от нас?» если этого уточнение не сделано, то неизвестно, выражает ли данное предложение истину или ложь.
Выше отмечалось, что предложения бывают повествовательные, побудительные и вопросительные. Остановимся и подробнее раскроем вопросительные предложения, основу которых составляет вопрос.
Вопрос в познании играет особенно большую роль, т.к. все познание мира начинается с вопроса, с постановки проблемы.
Термины «проблема», «вопрос», «проблемная ситуация» обозначают нетождественные, хотя и связанные между собой понятия.
Термин «проблема» означает такой вопрос из области науки, для ответа на который недостаточно имеющейся к данному моменту информаций.