Пример, нам даны 3 посылки:
1) «если Иван- брат Марьи или Иван- сын Марьи, то Иван и Марья- родственники».
2) «Иван и Марья –родственники»
3) «Иван не сын Марьи». Можно ли из них вывести логическое следствие, что «Иван – брат Марьи?» многим кажется, что такое логическое заключение из данных трех посылок будет истинным. Что бы проверить это, следует составить формулу этого умозаключения. Обозначим суждение «Иван – брат Марьи» буквой а, суждение «Иван –сын Марьи» -в, и суждение «Иван и Марья – родственники»- с. Над чертой -3 данные посылки, под чертой – предполагаемое заключение:
Объединив 3 посылки в конъюнкцию и присоединив к ним посредством знака предполагаемое заключение а, получим:
Теперь составим для этой формулы таблицу.
а | в | с | В | а в | (а в) с | (а в) с с в | (а в) с с в а |
И | И | И | Л | Л | И | Л | И |
И | И | Л | Л | Л | И | Л | И |
И | Л | И | И | И | И | И | И |
И | Л | Л | И | И | Л | Л | И |
Л | И | И | Л | И | И | Л | И |
Л | И | Л | Л | И | Л | Л | И |
Л | Л | И | И | Л | И | И | Л |
Л | Л | Л | И | Л | И | Л | Л |
В последней колонке формула в одном случае принимает значение «ложь», значит, она не является законом логики. Следовательно, из данных трех посылок не следует с необходимостью заключение, что «Иван – брат Марьи». Иван может быть племянником марь, или отцом Марьи, или дядей Марьи, или каким – либо другим ее родственником.
Этот пример показывает, что эффективность средств математической логики видна тогда, когда средствами, традиционной формальной логики трудно установить вытекает ли какое – либо следствие из данных посылок или нет, особенно, когда мы имеем дело с большим числом посылок.
Умозаключения делятся на дедуктивные, индуктивные и Все окуни дышат жабрами я по аналогии. Умозаключения могут быть логически необходимыми, т. е. давать истинное заключение, и вероятными ( правдоподобными), т.е. давать истинное заключение, а лишь с определенной степенью вероятности следующее из данных посылок.
Итак,
1) формами мышления являются не только понятия и сужения, но и умозаключения.
2) Структура умозаключения включает посылки, заключение и логическую связь между посылками и заключением.
3) Умозаключения делятся на дедуктивные, индуктивные и умозаключения по аналогии.
Дедуктивные умозаключения. Типы и виды Д.У. непосредственные умозаключения, их виды
Дедуктивное умозаключение (ДУ)-такое, в котором заключение необходимо следует из посылок, выражающих знания большей степени общности, и которое само является знанием меньшей степени общности.
Например, все рыбы дышат жабрами.
Все окуни – рыбы.
Все окуни дышат жабрами.
Здесь первая посылка «все рыбы дышат жабрами» является общеутвердительным суждением и выражает большую степень обобщения по сравнению с заключением, так же являющимся общеутвердительным суждением «Все окуни дышат жабрами». Мы строим умозаключение от признака, принадлежащего роду («рыба»), к его принадлежности к виду «окунь», т.е. от общего класса к его частному случаю, к подклассу.
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила вывода или правила преобразования суждений позволяют переходить от посылок определенного вида к заключениям также определенного вида. Так, наблюдая движение луны и солнца и делая логические выводы из этих наблюдений, люди еще в древности умели логически выводить из них достаточно точные предсказания о поступлении солнечных и лунных затмений.
Различают правила прямого вывода и правила непрямого (косвенного) вывода.
Правила прямого вывода позволяют из имеющихся истинных посылок получить истинное заключение. Правила непрямого вывода позволяют заключать о правомерности некоторых выводов из правомерности других выводов.
На основе правил прямого вывода построены дедуктивные умозаключения. Типы ДУ такие: выводы, зависящие от субъектнопредикатной структуры суждений; выводы, основанные на логических связях между суждениями.
Непосредственными умозаключениями называются ДУ, делаемые из одной посылки. К ним относятся следующие: превращение обращение, противопоставление предикату и умозаключения по «логическому квадрату»
· Превращение – вид непосредственного умозаключения, при котором изменяется качество посылки без изменения ее количества. По качеству связки категорические суждения делятся на утвердительные и отрицательные. При этом частноутвердительное суждение превращается в частноотрицательное и наоборот, а общеутвердительное суждение – в общеотрицательное и наоборот. Превращение строится двумя способами:
1) путем двойного отрицания, которое ставится перед связкой и перед предикатом: S есть Р. – S не есть не –Р.
Подлежащие – главные члены предложения – ни одно подлежащее не является не главным членом предложения;
2) отрицание можно переносить из предиката в связку.
S есть не Р. – S не есть Р.
Все галогены являются неметаллами. – ни один галоген не является металлом.
Превращению подлежат все 4 вида суждения: А, Е,I,О.
1. А-Е.
Структура: все S есть Р.- ни одно S не есть не –Р.
Все волки – хищные животные. – ни один волк не является нехищным животным.
2. Е-А.
Ни одно S не есть Р. – все S есть не –Р.
Ни один многогранник не является плоской фигурой. – все многогранники не являются неплоскими фигурами.
3. I –О
Некоторые S есть Р. – некоторые S есть не -Р. Некоторые грибы съедобны. Некоторые грибы не являются несъедобными.
4.О – I. Некоторые Sне есть Р. – некоторые S есть не -Р. Некоторые члены предложения не являются главными. – некоторые члены предложения являются неглавными.
· Обращением называется такое непосредственное умозаключение, в котором в заключении субъектом является предикат, а предикатом – субъект исходного суждения, т.е. происходит перемена мест субъекта и предиката при сохранении качества суждения.
Примеры:
1. все дельфины –млекопитающие. – некоторые млекопитающие являются дельфинами.
2. все развернутые углы – углы, стороны которого составляют одну прямую. –все углы, стороны которого составляют одну прямую, являются развернутыми углами.
3. некоторые школьники являются филателистами – некоторые филателисты являются школьниками.
4. некоторые музыканты – скрипачи. – все скрипачи являются музыкантами.
Обращение бывает 2-х видов: простое или чистое (примеры 2 и3) и обращение с ограничением (примеры 1 и 4).
Обращение будет чистое, или простое, тогда когда и S, и Р исходного суждения либо оба распределены, либо оба не распределены. Обращение с ограничением бывает тогда, когда в исходном суждении субъект распределен, а предикат не распределен, или наоборот, S не распределен, а Р распределен.
· Противопоставление предикату.
Это такое непосредственное умозаключение, при котором в новом суждении субъектом является понятие, противоречащее предикату исходного суждения, а предикатом является субъект исходного суждения, вместе с этим связка меняется на противоположную.
Иными словами мы делаем т.о.:
1. вместо Р берем не Р;
2. меняем местами S и не Р:
3. связку меняем на противоположную.
Например, дано суждение: «все львы -хищные животные». В результате противопоставления предикату получим суждение: «ни одно нехищное животное не является львом».
Противопоставление предикату можно рассматривать как результат 2- х последовательных непосредственных умозаключений – сначала превращение, затем обращения превращенного суждения.
Противопоставление предикату для различных видов суждений осуществляется так:
1. А. все S есть Р.—ни одно не –Р не есть S. Все металлы электропроводны. – ни один не электропроводник не является металлом.
2. Е. ни одно S не есть Р. – некоторые не Р есть S.ни один красный мухомор не является съедобным грибом – некоторые несъедобные грибы есть красные мухоморы.
3. О. некоторые S не есть Р.- некоторые не Р есть S. Некоторые преступления не являются умышленными. –некоторые неумышленные деяния являются преступлениями.
4. I. Из частноутвердительного суждения необходимые выводы не следуют.
Задача.
Сделать превращение, обращение и противопоставление предиката для следующего суждения:
«все грибы – растения».
Это суждение вида А.
Превращение –«ни один гриб не является не растением.
Обращение (с ограничением) –некоторые растения являются грибами.
Противопоставлению предикату –ни одно не растение не есть гриб.
Все виды непосредственных умозаключений дают нам новое знание особенно умозаключение, называемое противопоставлением предикату.
· Умозаключение по логическому квадрату.
На основании отношений между суждениями А, Е, I, О можно строить достоверные непосредственные выводы.
Например, пусть дано истинное суждение А: «все тюлени –ластоногие». Из него можно сделать следующие выводы:
1) суждение Е: ни один тюлень не является ластоногим –ложное суждение.
2) Суждение I: некоторые тюлени являются ластоногими –истинное суждение
3) Суждение О: некоторые тюлени не являются ластоногими – ложное суждение
Итак, непосредственные умозаключения – дедуктивные умозаключения, делаемые из одной посылки. К ним относятся: превращение, обращение, противопоставление предикату и умозаключение по логическому квадрату.
Логические ошибки: софизмы и паралогизмы. Понятие о логическом парадоксе
Непреднамеренная ошибка, допущенная человеком в мышлении, называется паралогизмом. Преднамеренная ошибка, совершаемая с целью запугать противника и выдать ложное суждение за истинное, называется софизмом.