В средние века большой общественный резонанс получила проблема общих понятий — «универсалий». Спор о них растянулся на столетия.
В эпоху Возрождения логика переживала настоящий кризис. Она расценивалась в качестве логики «искусственного мышления», основанного на вере, которому противопоставлялось естественное мышление, базирующееся на интуиции и воображении.
Новый, более высокий этап в развитии логики начинается с XVII в. Этот этап органически связан с созданием в ее рамках наряду с дедуктивной логикой логики индуктивной. В ней нашли отражение многообразные процессы получения общих знаний на основе все более накапливавшегося эмпирического материала. Потребность в получении таких знаний наиболее полно осознал и выразил в своих трудах выдающийся английский философ и естествоиспытатель Ф. Бэкон (1561—1626). Он и стал родоначальником индуктивной логики. «... Логика, которая теперь имеется, бесполезна для открытия знаний», — вынес он свой суровый приговор. Поэтому как бы в противовес старому «Органону» Аристотеля Бэкон написал «Новый Органон...», где и изложил индуктивную логику. Главное внимание в ней он обратил на разработку индуктивных методов определения причинной зависимости явлений. В этом огромная заслуга Бэкона. Однако созданное им учение об индукции по иронии судьбы оказалось не отрицанием предшествующей логики, а ее дальнейшим обогащением и развитием. Оно способствовало созданию обобщенной теории умозаключений. И это естественно, ибо, как будет показано ниже, индукция и дедукция не исключают, а предполагают друг друга и находятся в органическом единстве.
Индуктивная логика была позднее систематизирована и развита английским философом и ученым Дж. Ст. Миллем (1806—1873) в его двухтомном труде «Система логики силлогистической и индуктивной»[6]. Она существенно повлияла на дальнейшее развитие научного познания, способствовала достижению им новых высот.
Потребности научного познания не только в индуктивном, но и в дедуктивном методе в XVII в. наиболее полно воплотил французский философ и ученый Рене Декарт (1596—1650). В своем главном труде «Рассуждение о методе...», основываясь на данных, прежде всего математики, он подчеркивал значение рациональной дедукции как основного метода научного познания.
Последователи Декарта из монастыря в Пор-Рояле А. Арно и П. Николь создали труд «Логика, или Искусство мыслить». Он получил известность как «Логика Пор-Рояля» и долгое время использовался в качестве учебника по этой науке. В нем авторы вышли далеко за пределы традиционной логики и уделили главное внимание методологии научного познания, логике открытий[7]. Логика рассматривалась ими как познавательное орудие всех наук. Создание подобных «расширенных логик» стало характерным в XIX—XX вв.
Известный вклад в развитие традиционной формальной логики внесли русские ученые. Так, уже в первых трактатах по логике начиная приблизительно с X в. предпринимались попытки самостоятельного комментирования трудов Аристотеля и других ученых. Оригинальные логические концепции в России разрабатывались в XVIII в. и были связаны прежде всего с именами М. Ломоносова (1711—1765) и А. Радищева (1749—1802). Расцвет логических исследований в нашей стране относится к концу XIXв. Так, М. Каринский (1840—1917) создал оригинальную общую теорию выводов — как дедуктивных, так и индуктивных. Труды его ученика Л. Рутковского (1859—1920) были посвящены, прежде всего, основным типам умозаключений, их дальнейшей разработке, и представляли собой, по сути, частный случай более общей теории логических отношений. С. Поварнин (1870—1952) стремился разработать общую теорию отношений в логике. Дальнейшее развитие традиционная логика получила в годы Советской власти. Она успешно разрабатывается и в наши дни.
Подлинную революцию в логических исследованиях вызвало создание во второй половине XIX в. математической логики, которая получила еще название символической и обозначила новый, современный этап в развитии логики
Зачатки этой логики прослеживаются уже у Аристотеля, а также у его последователей, стоиков в виде элементов логики предикатов и теории модальных выводов, а также логики высказываний Однако систематическая разработка ее проблем относится к гораздо более позднему времени.[8]
Растущие успехи в развитии математики и проникновение математических методов в другие науки уже во второй половине XVII в. настоятельно выдвигали две фундаментальные проблемы. С одной стороны, это применение логики для разработки теоретических оснований математики, а с другой — математизация самой логики как науки. Наиболее глубокую и плодотворную попытку решить вставшие проблемы предпринял крупнейший немецкий философ и математик Г. Лейбниц (1646-1416) Тем самым он стал, по существу, зачинателем математической (символической) логики. Лейбниц мечтал о том времени, когда ученые будут заниматься не эмпирическими исследованиями, а исчислением с карандашом в руках. Он стремился изобрести для этого универсальный символический язык, посредством которого можно было бы рационализировать любую эмпирическую науку. Новое знание, по его мнению, будет результатом логической калькуляции — исчисления.
Идеи Лейбница получили некоторую разработку в XVIII в. и первой половине XIX в. Однако наиболее благоприятные условия для мощного развития символической логики сложились лишь со второй половины XIX в.К этому времени математизация наук достигла особенно значительного прогресса, а в самой математике возникли новые фундаментальные проблемы ее обоснования. Английский ученый, математик и логик Дж. Буль (1815-1864) в своих работах, прежде всего, применял математику к логике. Он дал математический анализ теории умозаключений, выработал логическое исчисление («Булева алгебра»). Немецкий логик и математик Г. Фреге (1848—1925) применил логику для исследования математики. Посредством расширенного исчисления предикатов он построил формализованную систему арифметики. Английский философ, логик и математик Б. Рассел (1872—1970) совместно с А. Уайтхедом (18б 1—1947) в трехтомном фундаментальном труде «Принципы математики» в целях ее логического обоснования попытался осуществить в систематической форме дедуктивно-аксиоматическое построение логики.
Так открылся новый, современный этап в развитии логических исследований. Пожалуй, наиболее важная отличительная особенность этого этапа состоит в разработке и использовании новых методов решения традиционных логических проблем. Это разработка и применение искусственного, так называемого формализованного языка — языка символов, т.е. буквенных и других знаков (отсюда и наиболее общее наименование современной логики — «символическая»).
Различают два вида логических исчислений: исчисление высказываний и исчисление предикатов. При первом допускается отвлечение от внутренней, понятийной структуры суждений, а при втором эта структура учитывается и соответственно символический язык обогащается, дополняется новыми знаками.
Значение символических языков в логике трудно переоценить. Г. Фреге сравнивал его со значением телескопа и микроскопа. А немецкий философ Г. Клаус (1912—1974) считал, что создание формализованного языка имело для техники логического вывода такое же значение, какое в сфере производства имел переход от ручного труда к машинному. Возникая на основе традиционной формальной логики, символическая логика, с одной стороны, уточняет, углубляет и обобщает прежние представления о логических законах и формах, особенно в теории выводов, а с другой — все более значительно расширяет и обогащает логическую проблематику. Современная логика — сложнейшая и высокоразвитая система знаний[9]. Она включает в себя множество направлений, отдельных, относительно самостоятельных «логик», все более полно выражающих запросы практики и в конечном счете отражающих многообразие и сложность окружающего мира, единство и многообразие самого мышления об этом мире.
Символическая логика находит все более широкое применение в других науках — не только в математике, но и в физике, биологии, кибернетике, экономике, лингвистике. Она приводит к возникновению новых отраслей знаний (метаматематика). Особенно впечатляюща и наглядна роль современной логики в сфере производства. Открывая возможность как бы автоматизировать процесс рассуждений, она позволяет передать некоторые функции мышления техническим устройствам. Ее результаты находят все более широкое применение в технике: при создании релейно-контактных схем, вычислительных машин, информационно-логических систем и т. д. По образному выражению одного из ученых, современная логика — это не только «инструмент» точной мысли, но и «мысль» точного инструмента, электронного автомата. Специально отметим, что достижения современной логики используются и в правовой сфере. Так, в криминалистике на разных этапах исследования производится логико-математическая обработка собранной информации.
Растущие потребности научно-технического прогресса обусловливают дальнейшее интенсивное развитие современной логики.
Остается сказать, что в разработку систем символической логики внесли важный вклад русские ученые. Среди них особенно выделяется П. Порецкий (1846—1907). Так, он первым в России начал чтение лекций по математической логике. Его собственные труды в этой области не только были на уровне трудов современных ему западноевропейских ученых, но и в ряде случаев превосходили их.