Смекни!
smekni.com

Дедуктивные умозаключения (стр. 1 из 5)

Контрольна робота

З курсу „Логіка”

Завдання

Теоретичне питання: Дедуктивні умовиводи

Задачі:

1. Чи правильно визначені відношення між поняттями:

А - фінансист;

В - державний службовець;

С – спортсмен;

Д – студент?

2. Дайте реальне та номінальне визначення поняттям: Конституція, валюта, вулиця.

3. Визначте вид судження, терміни і їх розподіленість за допомогою “логічного квадрату”, утворіть інші судження, звернувши увагу на їх істинність:

Деякі приміщення потребують ремонту в цьому році.

4. Наведіть приклади судження, яке відповідає наведеній формулі. Складіть для нього таблицю істинності: (В Ú С) → А

5. Проаналізуйте з погляду дотримання формально-логічних законів наведені міркування:

Свідок А.: Фірма Н. не мала солідних ділових партнерів. Внаслідок цього вона не отримувала великих прибутків.

Свідок Б. Фірма С. має великий досвід роботи і солідний авторитет. Два роки тому вона підписала договір про співробітництво з фірмою Н., що принесло їм солідні прибутки.

6. Зробіть методом перетворення, обернення і протиставлення предиката безпосередні умовиводи з такого засновку:

Жоден із туристів нашої групи не знав німецької мови.

7. Наведіть приклад деструктивної дилеми. Доведіть її правильність.

8. Побудуйте доказ тези методом доведення до абсурду:

Організація потребує фінансової допомоги.

9. Яка форма мислення виражена у міркуванні:

Зима. Вечоріє. Вночі, напевно, піде сніг?


Дедуктивные умозаключения

Выводы из сложных суждений. Другие виды дедуктивных выводов

Умозаключения строятся не только из простых, но и из сложных суждений. Широко используются умозаключения, посылками которых являются условные и разделительные суждения, выступающие в разных сочетаниях друг с другом или с категорическими суждениями. К ним относятся чисто условное, условно-категорическое, разделительно- категорическое и условно-разделительное умозаключения.

Особенность этих умозаключений состоит в том, что выведение заключения из посылок определяется не отношениями между терминами, как в категорическом силлогизме, а характером логической связи между суждениями. Поэтому при анализе посылок их субъектно-предикатная структура не учитывается.

Видами дедуктивных умозаключений являются также сокращенные, сложные и сложносокращенные силлогизмы.

Чисто условное и условно-категорическое умозаключения

Чисто условное умозаключение

Чисто условным называется умозаключение, обепосылки которого являются условными суждениями

Например:

Если изобретение создано совместным творческим трудом нескольких граждан (а), все они признаются соавторами изобретения (b)

Если они признаются соавторами изобретения (b), то порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (с).

Если изобретение создано совместным творческим трудом нескольких граждан (а), та порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (с).

В приведенном примере обе посылки — условные суждения, причем следствие первой посылки является основанием второй (b), из которого, в свою очередь, вытекает некоторое следствие (с). Общая часть двух посылок (b) позволяет связать основание первой (а) и следствие второй (с). Поэтому заключение также выражается в форме условного суждения.

Схема чисто условного умозаключения:

Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствие основания.

Умозаключение, в котором заключение получается из двух условных посылок, относится к простым. Однако заключение может следовать из большего числа посылок, которые образуют цепь условных суждений. Такие умозаключения называются сложными.

Условно-категорическое умозаключение

Условно-категорическим называется умозаключение, в котором одна из посылок — условное, а другая посылка и заключение — категорические суждения.

Рассмотрим пример:

Первая посылка — условное суждение, выражающее связь основания (а) и следствия (b). Вторая посылка — категорическое суждение, в котором утверждается истинность основания (а): иск предъявлен недееспособным лицом. Признав истинность основания, мы признаем истинность следствия (b): суд оставляет иск без рассмотрения.

Это умозаключение представляет собой одну из разновидностей условно-категорического силлогизма — утверждающий модус (modus ponens), в котором посылка, выраженная категорическим суждением, утверждает истинность основания, а заключение утверждает истинность следствия; рассуждение направлено от утверждения основания к утверждению следствия.

Утверждающий модус дает достоверные выводы. Он имеет схему:

Другим модусом, дающим достоверные заключения, является отрицающий модус (modus tollens), в котором посылка, выраженная категорическим суждением, отрицает истинность следствия, а заключение отрицает истинность основания. Рассуждение направлено от отрицания следствия к отрицанию основания. Например:

Нетрудно установить, что возможны еще две разновидности условно-категорического силлогизма.

(3) Посылка, выраженная категорическим суждением, отрицает истинность основания, заключение отрицает истинность следствия. Рассуждение направлено от отрицания основания к отрицанию следствия, т.е.:

Однако заключение по данному модусу не будет достоверным. Так, если в приведенном примере основание условной посылки отрицается (неверно, что иск предъявлен недееспособным лицом), нельзя с достоверностью отрицать истинность следствия (неверно, что суд оставляет иск без рассмотрения). Суд может оставить иск без рассмотрения и по другим обстоятельствам, например в результате истечения срока исковой давности.

(4) Посылка, выраженная категорическим суждением, утверждает истинность следствия, заключение утверждает истинность основания. Рассуждение направлено от утверждения следствия к утверждению основания, т.е.:

Заключение по данному модусу также не будет достоверным. Утверждение следствия (суд оставляет иск без рассмотрения) не влечет с необходимостью истинность основания: суд может оставить иск без рассмотрения не только в результате недееспособности истца, но и по другим причинам.

Итак, из четырех модусов условно-категорического умозаключения, исчерпывающих все возможные комбинации посылок, достоверные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законь! логики и называются правильными модусами условно-категорического умозаключения. Эти модусы подчиняются правилу: утверждение основания ведет к утверждению следствия и отрицание следствия — к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходимостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.

Необходимость вывода по утверждающему и отрицающему модусам можно показать в помощью таблиц истинности.

Утверждающий модус (рис.1).

Рис. 1

Истинность импликации (столбик 3) зависит от истинности антецедента (основания) (1) и консеквента (следствия) (2). Импликация считается ложной тогда и только тогда, когда антецедент истинен, а консеквент ложен (2-я строка таблицы). Во всех остальных случаях импликация истинна. Истинность или ложность конъюнкции (4-й столбик) также зависит от составляющих ее членов (3 и 1).

Конъюнкция истинна тогда и только тогда, когда истинны оба ее члена (1-я строка таблицы).

Теперь установим истинность импликации (5-й столбик таблицы — утверждающий модус). Так как импликация антецедента (4) и консеквента (2) не содержит случая, когда антецедент истинен, а консеквент ложен, то импликация всегда истинна. Следовательно, высказывание ((р→q)

р)→q является логическим законом. Отрицающий модус (рис. 2).

В столбиках 1 и 3, 2 и 4 показано, что если одно высказывание ложно, то его отрицание истинно. Импликация р и q (1 и 2) ложна только в одном случае (2-я строка таблицы) — столбик 5. Конъюнкция (столбик 6) высказываний (p → q) и ˉ|q (5 и 4) истинна только в одном случае (4-я строка таблицы). Импликация ((p→q)

ˉ|q) и ˉ|р (6 и 3) всегда истинна, так как не содержит случая, когда антецедент истинен, а консеквент ложен. Следовательно, высказывание ((p→q)
ˉ|q)→ˉ|p является логическим законом.

Рис. 2

С помощью таблиц истинности можно показать недостоверность выводов по неправильным модусам.

При анализе условно-категорического умозаключения нужно иметь в виду, что основание и следствие большей посылки может быть как утвердительным, так и отрицательным суждением: p→q; ˉ|p→q; p→ˉ|q; ˉ|p→ˉ|q. Например: