Смекни!
smekni.com

Аналитическая геометрия Декарта и проблемы философии техники (стр. 1 из 2)

Аналитическая геометрия Декарта и проблемы философии техники

Глубокие изменения в науке XVI-XVII века, закрепившие за этим периодом название “научной революции”, коснулись не только науки о природе, но и математических дисциплин. Создателям дифференциального и интегрального исчисления, аналитической геометрии, теории вероятностей предстояло преодолеть серьезные препятствия. Сложность заключалась не только в чисто технических, узконаучных моментах,- уже античность умеет по-своему интегрировать и проводить касательные, - но и в общефилософском плане. На пути создания математического анализа и аналитической геометрии стояли классические представления древности и средневековья о природе числа, континуума, о нормах строгости, доказательности в математике, - короче, о всем том, чем должна быть математика в рамках некоторой мировоззренческой перспективы. Пионерам новоевропейской математики - Валлису, Ферма, Декарту, Паскалю и др.- пришлось преодолевать не только узкоматематические трудности, но и вести спор с тысячелетними философскими традициями. Следует также отметить, что сложнейшие гносеологические проблемы, сопутствующие рождению новоевропейской математики, имеют не только исторический интерес. Ключевые проблемы математики XX века - интуиционизм, логицизм, конструктивные направления, нестандартный анализ и др.- теснейшим образом связаны с научными спорами XVI-XVII веков.

В плане чистой истории математики изобретение Декарта не было “потрясением основ”. Весь XVI век математика Западной Европы переживает бурный процесс алгебраизации. Истоки же этого движения нужно искать еще раньше, в позднем средневековье. С XII века, когда в Европе начинают переводить на латынь сочинения Евклида, Птолемея, Аль-Хорезми, вместе с переводами с арабского в западноевропейскую культуру транслируется и особый образ математики, сыгравший формирующую, заправляющую роль. Из математики исламской культуры приходит подчеркнутое пристрастие к алгоритмическим методам, к знанию, сформулированному в виде правил и рецептов.

Декарт, демонстрируя в своей книге мощь нового метода аналитической геометрии, существенно преакцинтирует само понимание геометрии - и в смысле метода, и в смысле предмета. Причины этой трансформации - и простирающиеся вплоть до нашего времени следствия ее - связаны с глубокими изменениями философского и общекультурного горизонта, внутри которого только и существует математика любой эпохи, с новыми ценностными ориентирами, характерными для науки XVII века.

Чтобы лучше понять смысл декартовского переворота в математике, нам нужно вспомнить, как осознается в античности познавательный статус геометрии. Пифагорейски-платоновская традиция понимает геометрию как науку двойственную, обязанную своим существованием двум принципам: интеллекту и воображению.

Греческая геометрия, развивавшаяся в русле платоновско-пифагорейской традиции, делала особый акцент на созерцательном характере геометрических методов, подчеркивала важность целостного постижения геометрических образов, небезразлично относилась и к эстетическому аспекту геометрии.

Сущность декартовской новации являлась ее алгебраизация. Новым, что принесла с собой картезианская “геометрия”, было принципиальное, систематическое сведение геометрических задач к алгебраическим. Речь щла не о новых удачных приемах решения задач, а об изменении самой точки зрения на геометрию. Понять эту трансформацию можно лишь обратившись к декартовскому философскому учению о методе. Действительно, существует удивительная непрерывность в переходе от чисто философских построений “Рассуждений о методе” к геометрическим конструкциям в “Геометрии”.

“Под методом же, - пишет Декарт, - я разумею точные и простые правила, строгое соблюдение которых всегда препятствует принятию ложного за истинное и, без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно”. Сформулируем специально эти характерные черты декартовского метода: достоверность, простота, механичность, продуктивность, полнота. Метод, однажды найденный, уже не требует для своей эксплуатации особых интеллектуальных усилий. Пользование им в науке приводит последнюю к своеобразной “механической работе”, безразличность которой, как неукоснительное невозмутимое следование предписанным правилам, служит даже гарантом правильности получаемых результатов и, следовательно, их истинности. В “Правилах” метод Декарта распадается на множество предписаний различной степени общности. В “Рассуждениях о методе” эти предписания сведены к четырем основным. Но для нас сейчас важнее другое. Поскольку правила метода выводятся из рассмотрения “структуры” самого человеческого разумения вообще, безотносительно к какой-либо конкретной науке, то они имеют трансцендентальный характер. Другими словами, эти правила характеризуют познание с его априорной стороны, с точки зрения его формы и играют роль в любых науках. Так, уже арифметика и геометрия древних, пишет Декарт, “являются не чем иным, как самопроизвольными плодами, возникшими из врожденных начал этого метода...”. Именно это, отчасти уже утраченное “искусство человеческой мудрости”, пытались воскресить, по мнению Декарта, и его современники под именем алгебры. “...Таким образом,- пишет Декарт,- должна существовать некая общая наука, объясняющая все относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным (т.е. арабским “алджебер”.), но старым, уже вошедшим в употребление именем всеобщей математики...”.

Идея “всеобщей математики” (mathesis universalis) была в высшей степени популярной в XVI-XVII веках. Идея эта восходит еще к тому образу математики, под которым она культивировалась в древних цивилизациях Египта, Вавилона, Индии.

Из этого алгоритмического понимания математики естественно вырастает идея об универсальном алгоритме - правиле, приеме, который бы позволил чисто механически, “без излишней траты умственных сил” решить любые проблемы. “Естественно”, говорим мы, но только при одном условии. Предпосылкой этого перехода является общая прагматическая ориентация в понимании сущности знания. Знание, как совокупность приемов и методов для достижения тех или иных целей. XIII век является свидетелем м гораздо более серьезной новации: францисканский миссионер Раймонд Луллий создает свое знаменитое “Великое искусство”, как одну из первых попыток “автоматизации” процесса логических рассуждений (напечатано было Ars magna только в 1480 году). Весь XVI век проходит под знаком настойчивых поисков удобной алгебраической символики, которая позволила бы создать некое “исчисление” для решения задач (К. Рудольф, М. Штифель, Р. Бомбелли, П. Рамус, С. Стевин, Ф. Виет и др.). В 80-х годах XVI века Дж. Бруно яростно защищает свой платонизированный вариант луллизма в Сорбонне. В XVII веке идея mathesis universalis привлекает не только Декарта, но и Лейбница, который всерьез начинает строить формальный язык своей “всеобщей характеристики”. Эта мощная традиция (в европейской культуре восходящая, вероятно, еще к идее “Органона” у Аристотеля) доходит и до XX века, обновляясь (и радикализируясь) в проблемах, связанных с компьютеризацией, “искусственным интеллектом”, логицистким обоснованием математики.

Декарт делает решительный шаг: он объединяет арифметику и геометрию в общую науку на основании операционного сходства их предметов. Это более общая наука, занимающаяся уже не числом и не протяженностью, а свойствами операций над ними, и называется алгеброй. Алгебра в этом смысле выступает как абстрактная алгебра, как наука, систематически изучающая не некие реальности, а отдельные выделенные свойства этих реальностей безотносительно к целостности последних. Этот способ, особенно угол зрения на математические объекты, отнюдь не естественен сам по себе и для античных математиков был бы в высшей степени надуманным и бесполезным. Чисто гносеологически он состоит в перемещении внимания с объекта познания на его субъект, в тотальности деятельностной установки которого стираются различия в манипулируемых объектах. Для выработки этой установки требовалось духовное усилие целой культурной эпохи, простирающейся от позднего средневековья до XVII века. Алгебраизация математики есть лишь внутриматематическое выражение этой более широкой философской (и, шире, мировоззренческой) тенденции.

С помощью “исчисления господина Декарта” человек, отнюдь не обладающий особыми математическими способностями, может решать задачи, которые в рамках традиционных методов античной геометрии были доступны лишь профессионалам высокого уровня. Решение задачи требует лишь аккуратной ее формализации- перевода на язык символов и далее чисто механической работы, связанной с преобразованием алгебраических выражений. Алгебра выступает почти универсальным посредником при решении геометрических (как и арифметических) задач. Сама по себе алгебра есть лишь наука операций, производимых над отрезками: каждому алгебраическому выражению соответствует последовательность действий над геометрическими (или арифметическими) величинами. В этом отношении алгебра есть не что иное (не что большее), как техника геометрических операций. И именно поэтому мы приводимся к необходимости рассмотреть всеми алгебру на фоне более общих вопросов, касающихся природы техники.

Метода: “без излишней траты умственных сил”, механически следуя простым правилам некоторого исчисления, иметь возможность решать разнообразные задачи. Алгебраическая техника не требует ни особых усилий воображения, ни тем более “интеллектуального созерцания”.

Техника связана с властью, техническое знание есть сила. “Техника - это умение, методы которого являются по отношению к цели внешними. Это умение- способность делать и обладать, а не созидать и предоставлять растит”. Действительно, применение алгебры в геометрии выступает как нечто внешнее по отношению к самой “материи” этой науки. Алгебраический “механизм” режет, комбинируют, считает, но своего элемента, своего “простого” - отрезка, как непрерывной величины, как действительного числа - он не знает (да и не хочет знать).