Смекни!
smekni.com

Язык и реальность в современной физике (стр. 1 из 4)

В. Гейзенберг

В истории науки поразительные открытия и новые идеи всегда приводили к научным дискуссиям; эти дискуссии вызывают появление полемических публикаций, и такая критика часто совершенно необходима для развития последних. Но эти споры почти никогда ранее не достигали той степени резкости, которую они приобрели после создания теории относительности, а также -- в меньшей степени -- квантовой теории. В обоих случаях научные проблемы в конечном счете были связаны даже со спорными вопросами политики, и некоторые физики пытались содействовать победе своих взглядов, прибегая к помощи политических методов. Эту бурную реакцию на новейшее развитие современной физики можно понять, только признав, что это развитие привело в движение сами основы физики и, возможно, естествознания вообще и что это движение вызвало ощущение, будто вся почва, на которую опирается естествознание, уходит из-под наших ног. Но вместе с тем это означает, пожалуй, и то, что еще не найден правильный язык, на котором можно говорить о новом положении дел, и что неточные и отчасти неправильные утверждения, высказанные в ряде случаев в пылу воодушевления новыми открытиями, вызвали появление всякого рода недоразумений. Здесь речь идет в самом деле о трудноразрешимой, принципиальной проблеме.

Усовершенствованная экспериментальная техника нашего времени ввела в поле зрения естествознания совершенно новые стороны явлений природы, стороны, которые не могут быть описаны с помощью понятий повседневной жизни или только с помощью понятий предшествующей физики. Но в таком случае, каким языком они должны описываться?

Первичным языком, который вырабатывают в процессе научного уяснения фактов, является в теоретической физике обычно язык математики, а именно -- математическая схема, позволяющая физикам предсказывать результаты будущих экспериментов. Физик может довольствоваться тем, что он обладает математической схемой и знает, как можно ее применять для истолкования своих опытов. Но ведь он должен говорить о своих результатах также и не физикам, которые не будут удовлетворены до тех пор, пока им не будет дано объяснение и на обычном языке, на языке, который может быть понят каждым. Но и для физика возможность описания на обычном языке является критерием того, какая степень понимания достигнута в соответствующей области. В каком объеме возможно вообще такое описание? Можно ли, например, говорить о самом атоме? Это настолько же языковая, насколько и физическая проблема, и поэтому прежде всего необходимо сделать несколько замечаний о языке вообще и о научном языке в особенности.

Язык был создан человеческой расой в доисторическое время как средство для передачи сообщений и как основа для мышления. Мы мало знаем о различных ступенях его формирования. Но, во всяком случае, ныне язык содержит большое количество понятий, которые могут рассматриваться как целесообразный инструмент для более или менее однозначной передачи сообщений о событиях повседневной жизни. Эти понятия были выработаны постепенно, в процессе использования языка, без критического анализа. При этом предполагается, что если некоторое слово употребляется достаточно часто, следовательно, мы более или менее точно знаем, что оно означает. Хорошо известен факт, что слова определены не столь четко, как это может показаться на первый взгляд, и что они обладают только некоторой ограниченной областью применения: например, можно говорить о куске дерева или о куске железа, но нельзя говорить о куске воды. Слово "кусок" не допускает его применения к жидким телам. Приведем другой пример. Бор при объяснении ограниченной применимости понятий обычно с большой охотой рассказывает следующую историю. Маленький мальчик приходит в магазин с пфенингом в руке и спрашивает: "Могу я у вас купить за один пфенинг конфетную смесь?" Продавец берет две конфеты из своих ящиков, дает их мальчику и говорит: "Смесь ты можешь сделать из них сам". Несколько более серьезный пример проблематичного соотношения слов и понятий представляет собой факт применения слов "красный" и "зеленый" дальтониками, хотя здесь, очевидно, границы применения этих слов дальтониками должны проходить совсем иначе, чем у других людей.

Эта принципиальная непосредственность смысла слов была осознана, разумеется, очень давно и вызвала желание давать определения, т. е., как гласит определение слова "определение", устанавливать границы, указывающие, где это слово может применяться, а где нет. Но определения могут быть даны, естественно, только с помощью других понятий, и в конце концов мы должны будем все-таки полагаться на некоторые понятия, которые принимаются так, как они есть, без анализа и определений.

В греческой философии проблема выражения понятий в языке была важнейшим предметом исследований со времен Сократа, жизнь которого представляла собой, если следовать ее художественному изображению в диалогах Платона, постоянное обсуждение содержания языковых понятий и границ наших средств выражения. Чтобы создать прочное основание для научного мышления, Аристотель в своих логических работах предпринял попытку проанализировать языковые формы и исследовать формальную структуру процесса вывода и заключений независимо от их содержания. На этом пути он достиг такой степени абстракции и точности, которая до того была не известна греческой философии, и тем самым в наивысшей степени содействовал выяснению и установлению определенного порядка в нашем способе мышления. Он фактически создал основы научного языка.

С другой стороны, логический анализ приносит с собой и опасность слишком большого упрощения. В логике внимание направлено на специальные языковые структуры, на однозначное связывание посылок и заключений, на простые схемы рассуждений. Всеми другими языковыми структурами в логике пренебрегают. Эти структуры могут получаться, например, благодаря ассоциациям между определенными промежуточными значениями слов; так, например, второстепенное значение слова, почти не оставляющее следа в нашем сознании, может все же существенно повлиять на содержание предложения, когда это слово произнесено. Тот факт, что любое слово может вызвать в нашем мышлении многие, только наполовину осознаваемые движения, может быть использован для того, чтобы выразить с помощью языка определенные стороны действительности более отчетливо, чем это было бы возможно с помощью логической схемы. Поэтому поэты часто выступали против такого преувеличенного подчеркивания логических схем в языке и мышлении, могущего привести к тому, что язык станет не пригоден для той цели, для какой он был первоначально создан. Здесь можно, например, напомнить известные слова, с которыми Мефистофель в "Фаусте" Гете обращается к ученику:

Цените время: дни уходят невозвратно! Но наш порядок даст привычку вам Распределять занятья аккуратно. А потому, мой друг, на первый раз, По мне, полезно было бы для вас Курс логики пройти в ее границах Начнут сейчас дрессировать ваш ум, Держа его в ежовых рукавицах, Чтоб тихо он без лишних дум И без пустого нетерпенья Всползал по лестнице мышленья, Чтоб вкривь и вкось, по всем путям, Он не метался там и сям. Затем внушат вам, ради той же цели, Что в нашей жизни всюду, даже в том, Что прежде сразу делать вы умели, -- Как, например, питье, еда, -- Нужна команда "раз, два, три" всегда. Так фабрикуют мысли. С этим можно Сравнить хоть ткацкий, например, станок. В нем управленье нитью сложно: То вниз, то вверх снует челнок, Незримо нити в ткань сольются; Один толчок -- сто петель вьются. Подобно этому, дружок, И вас философ поучает! "Вот это -- так и это -- так, А потому и это -- так, И если первая причина исчезает, То и второму не бывать никак". Ученики пред ним благоговеют, Но ткань соткать из нитей не сумеют Иль вот: живой предмет желая изучить, Чтоб ясное о нем познанье получить, -- Ученый прежде душу изгоняет Затем предмет на части расчленяет И видит их, да жаль: духовная их связь Тем временем исчезла, унеслась! 14

Это место содержит достойное восхищения описание структуры языка и обоснованную критику узости обычных логических схем.

С другой стороны, наука ведь должна основываться на языке как на единственном средстве передачи сообщений, и поэтому там, где проблема однозначности имеет большую важность, логические схемы должны играть свою роль. Специфическая трудность в этом пункте может быть, пожалуй, описана следующим образом. В естествознании мы пытаемся единичное вывести из общего: единичное явление должно быть понято как следствие простых общих законов. Эти общие законы, когда они формулируются в языке, могут содержать только некоторые немногие понятия, ибо, в противном случае, законы были бы не простыми и не всеобщими. Из этих понятий должно быть выведено далее бесконечное многообразие возможных явлений, и при этом не только качественно и приближенно, но и с огромной степенью точности в отношении всякой детали. Становится очевидным, что понятия обыденного языка, определенные, как правило, столь неточно и нечетко, никогда не позволили бы сделать такой вывод. Если из заданных посылок следует цепь заключений, то общее число возможных членов в цепи зависит от точности посылок. Поэтому в естествознании основные понятия общих законов должны быть определены с предельной степенью точности, а это возможно только с помощью математической абстракции.

Подобное же положение может иметь место и в других науках -- в них также могут стать необходимыми точные определения, например в юриспруденции. Но здесь общее число членов в цепи заключений никогда не бывает очень большим; поэтому здесь нет необходимости в совершенной точности, и в большинстве случаев мало-мальски точные определения оказываются исчерпывающе сформулированными с помощью понятий обыденного языка.

В теоретической физике мы пытаемся понять группы явлений, вводя математические символы, которые могут быть поставлены в соответствие некоторым фактам, а именно результатам измерений. Для символов мы находим имена, которые делают ясной их связь с измерением. Этим способом символы связываются, следовательно, с обыденным языком. Но затем символы связываются между собой с помощью строгой системы определений и аксиом, и в конце концов законы природы приобретают вид уравнений между символами. Бесконечное многообразие решений этих уравнений соответствует тогда бесконечному многообразию единичных явлений, возможных в данной области природы. Таким образом, математическая схема отображает рассматриваемую группу явлений в той мере, в которой соблюдаются соотношения между символами и измерениями. Эти соотношения позволяют также затем выразить сами законы природы в понятиях обыденного языка, так как наши эксперименты, состоящие из действий и измерений, всегда могут быть описаны этим языком.