Само по себе четырехмерное представление движения частицы может быть легко усвоено, оно кажется почти очевидным и, в сущности привычным. Всем известно, что реальные события определяются четырьмя числами: тремя пространственными координатами и временем, прошедшим до события с начала летосчисления, или с начала года, или от начала суток. Будем откладывать на листе бумаги по горизонтальной прямой место какого-либо события - расстояние этого места от начального пункта, например расстояние до точки, достигнутой поездом, от станции отправления. По вертикальной оси отложим время, когда поезд достиг этой точки, измеряя его с начала суток или с момента выхода поезда со станции отправления. Тогда мы получим график движения поезда в двумерном пространстве, на географической карте, лежащей на столе, а время показывать вертикалями над картой. Тогда мы не обойдемся чертежом, пнадобится трехмерная модель, например проволока, укрепленная над картой. Она будет трехмерным графиком движения: высота проволоки в каждой точке над лежащей картой будет изображать время, а на самой карте проекция проволоки изобразит движение поезда по местности.
Изобразим теперь не только перемещение поезда на плоскости, но и его подъемы и спуски, т.е. его движение в трехмерном пространстве. Тогда вертикали уже не могут изобразить время, они будут означать высоту поезда над уровнем моря. Где е откладывать время
- четвертое измерение? Четырехмерный график нельзя построить и даже нельзя представить себе. Но математика уже давно умеет находить подобные геометрические величины, пользуясь аналитическим методом, производя вычисления. В формулы и вычисления наряду с тремя пространственными измерениями можно ввести четвертое - время и, отказавшись от наглядности, создать таким образом четырехмерную геометрию.
Если бы существовала мгновенная передача импульсов и вообще сигналов, то мы могли бы говорить о двух событиях, происшедших одновременно, т.е. отличающихся только пространственными координатами. Связь между событиями была бы физическим прообразом чисто пространственных трехмерных геометрических соотношений. Но, как уже говорилось, Эйнштейн в 1905 г. отказался от понятий абсолютной одновременности и абсолютного, независимого от течения времени. Теория Эйнштейна исходит из ограниченности и относительности трехмерного, чисто пространственного представления о мире и вводит более точное пространственно-временное представление. С точки зрения теории относительности в картине мира должны фигурировать четыре координаты и ей должна соответствовать четырехмерная геометрия.
В 1908 г. Миньковский представил теорию относительности в форме четырехмерной геометрии. Он назвал пребывание частицы в точке, определенной четырьмя координатами, "событием", так как под событием в механике следует понимать нечто определенное в пространстве и во времени - пребывание частицы в определенной пространственной точке в определенный момент. Далее он назвал совокупность событий - пространственно-временное многообразие - "миром", так как действительный мир развертывается в пространстве и во времени. Линию, изображающую движение частицы, т.е. четырехмерную линию,каждая точка которой определяется четырьмя координатами, Миньковский назвал "мировой линией".
Длина отрезка "мировой линии" инвариантна при переходе от одной системы отсчета к другой, прямолинейно и равномерно движущейся по отношению к первой. В этом и состоит исходное утверждение теории относительности, из него можно получить все ее соотношения.
Следует подчеркнуть, что геометрические соотношения, с помощью которых Миньковский изложил теорию относительности, подчиняются Евклидовой геометрии. Мы можем получить соотношения теории относительности, предположив, что четырехмерное "расстояние" выражается таким же образом через четыре разности - три разности пространственных координат и время, прошедшее между событиями, - как и трехмерное расстояние выражается в евклидовой геометрии через разности пространственных координат. Для этого, как уже говорилось, необходимо только выразить время в особых единицах. Длина отрезка мировой линии определяется по правилам евклидовой геометрии, только не трехмерной, а четырехмерной. Ее квадрат равен сумме четырех квадратов приращений пространственных координат и времени. Иными словами, это - геометрическая сумма приращений четырех координат, из которых три - пространственные, а четвертая - время, измеренное особыми единицами. Мы можем назвать теорию относительности учением об инвариантах четырехмерной евклидовой геометрии. Поскольку время измеряется особыми единицами, то говорят о псевдоевклидовой четырехмерной геометрии.
Сумма квадратов четырех приращений - квадрат четырехмерного расстояния между событиями, квадрат длины отрезка мировой линии - не меняется при переходе от системы K к движущейся по отношению к ней системе K'. Четырехмерное "расстояние"является инвариантом преобразований четырехмерной геометрии, соответствующих переходу от одной системы отсчета K к другой системе K', движущейся относительно первой прямолинейно и равномерно. Инвариантность следует из неизменности скорости света при переходе от K к K'.
В этой инвариантности выражается однородность четырехмерного мира. Выше говорилось, что в инвариантности длины трехмерного отрезка при переносе начала координат выражается однородность трехмерного пространства. Теперь мы можем инвариантность четырехмерного отрезка мировой линии рассматривать как45 выражение однородности и изотропности четырехмерного пространства-времени.
Однородность пространства выражается в сохранении импульса, а однородность времени - в сохранении энергии. Можно ожидать, что в четырехмерной формулировке закон сохранении импульса и закон сохранения энергии сливаются в один закон сохранения энергии и импульса. Действительно, в теории относительности фигурирует такой объединенный закон импульса.
Однородность пространства-времени означает, что в природе нет выделенных пространственно-временных мировых точек. Нет события, которое было бы абсолютным началом четырехмерной, пространственно-временной системы отсчета. В свете идей, изложенных Эйнштейном в 1905 г., четырехмерное расстояние между мировыми точками, т.е. пространственно-временной интервал не будет меняться при совместном переносе этих точек вдоль мировой линии. Это значит, что пространственно-временная связь двух событий не зависит от того, какая мировая точка выбрана в качестве начала отсчета, и что любая мировая точка может играть роль подобного начала.
Однородность пространства стала исходной идеей науки после того, как Галилей и Декарт, сформулировав принцип инерции и принцип сохранения импульса, показали, что в мировом пространстве нет выделенной точки - начала привилегированной системы отсчета, что расстояния между телами и их взаимодействия не зависят от движения состоящей из этих тел материальной системы. Однородность времени стала исходной идеей науки после того, как физика XIX века, сформулировав принцип сохранения энергии, показала независимость процессов природы от их смещения во времени и отсутствие абсолютного начала отсчета времени. Теперь исходной идеей науки становится однородность пространства-времени.
Таким образом, идея однородности является стержневой идеей науки XVII-XX вв. Она последовательно обобщается, переносится с пространства на время, и далее, на пространство-время.
В отличие от известной классической физике однородности пространства и времени, взятых порознь, однородность пространства-времени была бы нарушена, если бы в некоторой области происходила мгновенная передача сигнала. Примером могла бы служить абсолютно твердая частица, целиком заполняющая занятый ею объем пространства и неспособная к деформации. Через занятое такой частицей пространство импульс передавался бы мгновенно, и мы, таким образом, столкнулись бы с физическим эквивалентом трехмерной геометрии, с пространством, существующим независимо от времени.
В 1911-1916 гг. Эйнштейн создал общую теорию относительности. Теория, созданная в 1905 г., называется специальной теорией относительности, так как она справедлива лишь для специального случая, прямолинейного и равномерного движения. Распространение света, как и вообще, все механические и электродинамические процессы, протекает неизменным образом, если перейти от покоящейся системы K к к системе K', движущейся по отношению к К прямолинейно и равномерно. Поэтому, не выходя за пределы движущейся системы нельзя зарегистрировать ее прямолинейное и равномерное движение, ни механическим, ни оптическими (электродинамическими) опытами. В системе, движущейся прямолинейно и равномерно, движение не вызывает внутренних эффектов. В поезде, движущемся без ускорения, не происходит ничего, что продемонстрировало бы пассажирам его движение. Это движение имеет относительный смысл, поезд движется относительно Земли и находящихся на Земле неподвижных предметов. С тем же правом можно сказать, что Земля движется относительно поезда; нельзя найти такие явления в поезде, которые указывают на неравноценность этих двух утверждений. Иное дело - ускоренное движение. В связи с ньютоновым понятием абсолютного движения уже говорилось, что пассажир убеждается в ускорении поезда, ощущая толчок, вызванный силой инерции и направленный назад, когда поезд набирает скорость, и вперед, когда машинист начинает торможение и поезд теряет скорость. Таким образом, ускоренное движение создает внутренние эффекты в движущейся системе.