Смекни!
smekni.com

С чем идет современная логика в XXI век? (стр. 2 из 6)

Для многих математиков того времени такой переход не представлялся достаточно обоснованным (их точку зрения выразил А. Пуанкаре в своих работах по методологии науки [2]). Но к концу XX столетия точка зрения Гильберта оказалась доминирующей в некоторых разделах математики, в первую очередь в универсальной алгебре и в математической логике. Во многом эта точка зрения совпала с основной парадигмой логического позитивизма. В то же время у некоторых современных математиков отношение к программе Гильберта явно негативное. Академик В.И. Арнольд в статье под названием "Выживет ли современная математика?" назвал формализованный аксиоматический метод, развившийся в русле программы Д. Гильберта, "самоубийственным демократическим принципом" [3]. Анализ негативных тенденций, обусловленных чрезмерной формализацией математики, содержится во многих публикациях. Достаточно подробная информация на эту тему приведена в [4,5].

С философской точки зрения задача, поставленная в рамках логического позитивизма, так и не была выполнена. В частности, в своих поздних исследованиях один из основоположников этого направления Людвиг Витгенштейн пришел к выводу, что естественный язык нельзя реформировать в соответствии с разработанной позитивистами программой. Даже язык математики в целом устоял перед мощным напором "логицизма", хотя многие термины и структуры предлагаемого позитивистами языка вошли в некоторые разделы дискретной математики и существенно дополнили их. Популярность логического позитивизма как философского направления во второй половине XX столетия заметно упала - многие философы пришли к выводу, что отказ от многих "нелогичностей" естественного языка, попытка втиснуть его в рамки основополагающих принципов логического позитивизма влечет за собой дегуманизацию процесса познания, а вместе с этим и дегуманизацию человеческой культуры в целом. Косвенно этот тезис приняли и некоторые главные идеологи позитивизма. Например, известный философ и логик Г. Рейхенбах разделил процесс познания на "контекст открытия" и "контекст подтверждения" и предложил ограничить сферу методологии науки только "контекстом подтверждения" [6]. Тем самым он как бы признал, что продуктивная, творческая составляющая процесса познания, содержащаяся в "контексте открытия", выпала из поля зрения методологии позитивизма.

Стоит отметить, что современная философия ударилась в другую крайность. Неприятие основной философской установки логического позитивизма обернулось практически полным отказом от всякой логики. Особенно ярко такая негативная установка проявляется в модной сейчас философии постмодерна.

В то же время логический позитивизм оставил ощутимый след в современной науке: заметно повысился интерес к логической интерпретации языка, были открыты или уточнены логические системы, которые легли в основу современной компьютерной революции. Заодно среди тех, кто так или иначе соприкасается с проблемой соотношения языка и мышления, окрепло убеждение, что понять суть человеческого мышления невозможно, если не понять сути логических методов анализа человеческих рассуждений и аргументов, выраженных на естественном языке. Математическая логика вошла в современную лингвистику и прочно закрепилась в ней.

Однако в самой математической логике пока что нет полной ясности. На ее основе реализована техническая и математическая база современных компьютеров, но в то же время моделирование и анализ естественных рассуждений на ее языке сопровождается большими трудностями и проблемами. Многие методы рассуждений, которые используются в естественном языке, часто весьма трудно однозначно отобразить на языке математической логики. В некоторых случаях такое отображение приводит к существенному искажению сути естественного рассуждения. И есть основание полагать, что эти проблемы являются следствием исходной методологической установки аналитической философии и позитивизма о нелогичности естественного языка и о необходимости его коренного реформирования.

Сама исходная методологическая установка позитивизма также не выдерживает критики. Обвинять разговорный язык в нелогичности просто абсурдно. На самом деле нелогичность характеризует не сам язык, а многих пользователей этого языка, которые просто не знают или не хотят использовать логику и компенсируют этот изъян психологическими или риторическими приемами воздействия на публику, либо в своих рассуждениях используют в качестве логики систему, которая называется логикой лишь по недоразумению. В то же время имеется немало людей, речь которых отличается ясностью и логичностью, и эти качества не определяются знанием или незнанием основ математической логики.

3. Неестественная логика в основаниях математики

Настораживает еще одно обстоятельство, которое имеет непосредственное отношение к основным проблемам современной логики. В рассуждениях тех, кого можно отнести к законодателям или последователям формального языка математической логики, нередко обнаруживается своеобразная "слепота" по отношению к элементарным логическим ошибкам. На эту слепоту в основополагающих работах Г. Кантора, Д. Гильберта, Б. Рассела, Дж. Пеано и др. еще в начале нашего столетия обратил внимание один из великих математиков Анри Пуанкаре [2]. Эта проблема не потеряла своего значения и в наше время - А.А. Зенкин в ряде недавних публикаций [7,8] обосновал несостоятельность некоторых методов доказательств, используемых при выводе основополагающих теорем Канторовой теории множеств. Заметим, что некоторые из этих методов (в частности, диагональный метод Кантора) часто используются в современных исследованиях по формальной логике.

С бесконечностью связана одна распространенная в современных теориях логического вывода тенденция, которая при внимательном рассмотрении оказывается непреодолимым препятствием для прикладной сути логики. Формальная логика оперирует сугубо дискретными сущностями (словами, символами, обозначениями объектов и операций, значками и т.д.). Ясно, что множество всех этих возможных объектов необозримо, но даже если предположить, что человечество просуществует еще (дай Бог!) миллиарды лет, то все равно множество этих объектов будет конечным множеством и вряд ли когда-нибудь приблизится к количеству элементарных частиц во Вселенной, которое по современным физическим представлениям характеризуется хотя и чрезмерно большим, но все же конечным числом. В то же время подавляющая часть современных работ по основаниям математической логики начинается с того, что в них постулируется "счетность" алфавита, что означает, что число "термов" и "атомов" может быть конечным или счетным бесконечным множеством. Если удерживаться в рамках "конечности" алфавита, то ничего абсурдного в этом нет, но дело в том, что за данным "постулатом" о счетности алфавита, скрывается, то, что некоторые открытые Кантором свойства бесконечных множеств, несовместимые со свойствами конечных множеств, переносятся на свойства многих систем логического вывода. Вполне естественно возникает вопрос: "Может ли человек, способный охватить в своем сознании лишь конечное множество слов и обозначений, воспользоваться "достижениями" такой "продвинутой" логики?"

Во многих современных работах по логике и математике, в которых заметно влияние программы Гильберта, не находят объяснения многие явно нелепые с точки зрения естественной логики утверждения. Соотношение между "элементом" и "множеством" является простейшим примером такого рода. Во многих работах этого направления утверждается, что некоторое множество (назовем его A) может быть элементом другого множества (назовем его B). Например, в широко известном руководстве по математической логике [9] мы встретим такую фразу: "Множества сами могут быть элементами множеств, так, например, множества всех множеств целых чисел имеет своими элементами множества". Заметим, что это утверждение не просто оговорка. Оно содержится в качестве "скрытой" аксиомы в формальной теории множеств, которую многие специалисты считают основанием современной математики, а также в формальной системе, которую построил математик Гедель при доказательстве своей знаменитой теоремы о неполноте формальных систем [10].

Эта теорема относится к довольно узкому классу формальных систем (в их число входит формальная теория множеств и формальная арифметика Пеано), логическая структура которых явно не соответствуют логической структуре естественных рассуждений и обоснований. Однако уже более полувека она является предметом бурного обсуждения среди логиков и философов в контексте общей теории познания. При таком широком обобщении этой теоремы получается, что принципиально непознаваемыми являются многие элементарные понятия. Но при более трезвом подходе оказывается, что теорема Геделя показала лишь несостоятельность программы формального обоснования математики, предложенной Д. Гильбертом и подхваченной многими математиками, логиками и философами. Более широкий методологический аспект теоремы Геделя вряд ли можно считать приемлемым до тех пор, пока не получен ответ на следующий вопрос: является ли программа обоснования математики, предложенная Гильбертом, единственно возможной?

Чтобы понять двусмысленность утверждения "множество A есть элемент множества B", достаточно задать простой вопрос: "Из каких элементов в этом случае сформировано множество B?". С точки зрения естественной логики возможны лишь два исключающих друг друга варианта объяснения.

Объяснение первое. Элементами множества B являются имена некоторых множеств и, в частности, имя или обозначение множества A. Например, множество всех четных чисел содержится как элемент в множестве всех имен (или обозначений) множеств, выделенных по каким-либо признакам из множества всех целых чисел. Можно привести более понятный пример: множество всех жирафов содержится как элемент в множестве всех известных видов животных. В более широком контексте множество B можно также сформировать из концептуальных определений множеств или ссылок на множества.