Странности стандартной модели:
Не найдет ответ на вопр. о причине расширения вселенной. Неизвест. конечна она или нет. Это зависит от плотности. Непонятен вопр. кривизны простр. (отриц, полож, нулевая). Если плотность критич, то пространство Евклидово, кривизна нулевая и вселен. бесконечн. Если плотн < критич, то простр обладает кривизной лобачевс (отрицат) и вселен. бесконечна. Если плотн > критич, то простр подчинено геометр. Римана и кривизна положит, вселен пульсирует. По соврем данным плотн < критич. Неясен возраст вселен. Определяют по длительн. расширения. В посл. время расшир с V=75 км/с. Если и раньше так, то возраст 13 млрд. Если замедляется, то возраст меньше. Либо во вселен. кроме сил гравитации есть силы отталкивания, тогда возраст больше. Но главное – вселен. нестационарна из-за изменен. температуры. Идет эволюц. вселен из-за появлен. новых структур.
Строение вселенной
Это развив. система взаимодейств. небесн тел и подсистем. элементы вселенной: звезды и зв. сист, планеты и пл. сист, галактики, метагалакт, диффузная материя/ Диф. мат. сущест. в виде разобщен. атомов и молекул + более плотные образовния- гигантс. облака пыли и газа. Также много материи в виде излучения. Большинство матер. в звездах. Зв- светящиеся гигантские плазменные образования различ. величины, высокой темпер. и с разн. характерист. движения. Стянуты между собой электромагн. и гравитац. полями. Атомы в звезд. находятся в ионизированном состоянии. Внутри звезд идет ядерн. реакция как при взрыве водородн. бомбы. Эти реакц. – источн огромн. энергии, выбрасывают ее в виде мощн. потока газа. Звезды не существ. изолированно. Объединяются в скопления (рассеянные, шаровые). Над поверхн. зв. могут быть протуберанцы. (громадн. массы раскал. газообразн. вещ). Осн. эволюц. во вселен. происходит внутри звезд. Образуется плавильный тигель и новые вещ. Угасшие звезды- инертные. В газово-пылев. туманн. образуются сгущения, котор. со временем превращ. в звезды/Галактики- огромн. скопления звезд, планет. сист и межзвезн. были и газа взаимод. между собой. Насчитали более 10 млрд. галакт. Бываютспиралевидн, эллиптич, неправильн. Наша со структ. спиральна, но конечн. вид эллиптич. У нас 120 млрд. звезд. Диаметр диска- 120тыс свет лет. Соседка- Туман. Андромеды. Солнце на окраине галакт. Ядро наше из плотн скопления звезд, газа и пыли. Облака- объед. галакт. Упорядоч. сист галакт и облаков – метагалактика. Чем дальше галакт. друг от друга, тем быстрее разбегаются. Расширени метагал – это ее системное свойство. Гипотезы: 1)метаг. одна 2) много – образуют большую многоядерн. вселенную/Планеты- несветящ, темные тела привязанные к звездам. Масса меньше звезд, это особый вид макротел. Имеют структуру: ядро, литосфера, мантия, атмосфера и гидросфера. Звезда и планеты вокруг нее – планет. сист.
Теории происхожд солн сист.
Первые теор. выдвинули Кант и Лаплас. Кант говорил, что сист. не существ. вечно. На месте солнца было сгущение, вокруг рассеянная материя. Из диффуз. мат. образовались планеты. Джинс говорил: солнце столкнул. с другой звездой и из Солнца вырвалась струя газа. Но ведь звезды очень далеки друг от друга+ не учитыв. характ. упорядоченн. солн. сист. Согласн. соврем теориям для объяснен происх. использ. не только механист. но и эл-магн. силы. Из газа образов. солнце, а на расстоян. от него были остатки газ. облака. Они стали притяг. к Солнцу, но их останов. эл-магн. силы/ Закономер. солн. сист: 1) все план. вращ. вокруг солнца в 1 напр. и почти в 1 плоскости 2)большинство спутн. вращ. в том же направлении 3)солн, планеты, спутн. вращ. вокруг своих осей в том же напр, в котор движ. по своей траектории 4) кажд. планета удалена от солнца в два раза дальше чем предыдущ.
Микромир
В Грец. думали что атом неделим, но это лажа. Самой мелкой частицы нет т.к. вещ. переходит в поле. Нельзя сложное сводить к сумме мелких элементов. Элем. частицы – котор. не явл. атомами или атомными ядрами, за исключ. протона и нейтрона, котор. входят в ядро атома. Эл. част.- электрон, нийтрина, фотон, пи-мезон, мюон. Это субъядерные частицы. Первым элект. открыл Томпсон. С 50х осн. средством открытий явл. ускоритель заряженных частиц.
Осн. характер. элемент. частиц.
Масса, заряд, средн. время жизни, спин, квантовые числа. 1)Масса покоя определяется по отношен. к массе элект. Делятся на 3 вида: легкие – лептоны, средние- мезоны, тяжелые – болионы. Фотон не имеет массы покоя. 2) частицы испускаются или поглощаются при взаимод. с др. частиц. С точки зрен. заряда бывают положит, отрицат, эл. нейтральн. По времени жизни бывают стабильные, нестабильн, квазистабильн. 5 стабильн- фотон, 2 нийтрина, элект, протон. Спин- момент количества движения частицы. Квант. числа – состояние частиц.
Взаимодействие эл. частиц
4 вида – сильное, эл-магнит, слабое, гравитац. Сильное на уровне атомн. ядер- притяжение отталкивания частей ядра. Между протон. и нейтр. связь обеспеч сильным взаимодействием. Эл-маг в 1000 раз слабее, но дальше действует. Главн. носитель- фотон. Слабое связано с распадом частиц. Гравитац- в космич. масштабах имеет решающ. значение. В области микромира оно самое слабое. Фундамент. взаимод. и приводит к превращению частиц, их уничтожен. и созданию. По времени превращен. частиц судят о силе взаимодейств. По видам взаимод с их участ. част. делятся на адроны (в сильном) и лептоны (в слабом). Cостояние поля в котор. нет квантов называется вакуумом. Поле- это единство прерывности и непрерывн. А если вакуум есть- то только непрерывно. Чистое поле без дискретности – волны. Макс Бор назвал их волнами вероятности. Непрерывность поля задается волновой функцией, котор. описывается через понятие вероятности.
Структура эл. част.
Состоят из кварков (наиболее верно по отношению к адронам). Эмпирически не доказано (удержание кварков). Если утверждать что кварки конечн. част., то возводим в абсолют дискретность материи. Частицы – кванты поля, а оно бывает непрерывно. Атомизм- подход к материи с точки зрения дискретн. А сейчас объединяют 2 подхода- атомизм и дискретность + непрерывность и целост. Энергия эл. част. не раскладывается на собств. эенерг. и еэ. связей. Их нельзя разлож на части. Они не распадаются а превращ. в другие. Мир эл. частиц характеризуется как виртуальность- непрерывность от взниконов до исчезовен.
Основные этапы развития естествознания.
Естествознание древнего мира. Завершенного деления на дисциплины не существовало, создаваемые концепции в своем большинстве носили мировоззренческий характер. Экспериментальный метод познания в принципе допускался, но роль решающего критерия истинности эксперименту не отводилась. Верные наблюдения и гениальные обобщающие догадки сосуществовали с умозрительными и часто ошибочными построениями. Классический период развития естествознания берет свое начало с экспериментальных работ Галилея (18 век) и длится до начала нашего столетия. Характеризуется четким разделением наук на традиционные области и даже несколько гипертрофированной ролью эксперимента в их развитии (“понять- значит измерить”). Эксперимент рассматривается не только как критерий истинности, но и как основной инструмент познания. Вера в истинность экспериментально добытых результатов столь велика, что их начинают распространять на новые области и проблемы, где соответствующей проверки не производилось. При обнаружении расхождений так создаваемых концепций с реально наблюдаемыми явлениями неизбежно возникало недоумение, граничащее с попытками отрицания самой возможности познания окружающего мира. Современное естествознание характеризуется лавинообразным накоплением нового фактического материала и возникновением множества новых дисциплин на стыках традиционных. Резкое удорожание науки, особенно экспериментальной. Как следствие - возрастание роли теоретических исследований, направляющих работу экспериментаторов в области, где обнаружение новых явлений более вероятно. формулировка новых эвристических требований к создаваемым теориям: красоты, простоты, внутренней непротиворечивости, экспериментальной проверяемости, соответствия (преемственности). Роль эксперимента, как критерия истинности знания, сохраняется, но признается , что само понятие истинности не имеет абсолютного характера: утверждения, истинные при определенных условиях, при выходе за границы, в рамках которых проводилась экспериментальная проверка, могут оказаться приближенными и даже ложными. Современное естествознание утратило присущую классическим знаниям простоту и наглядность. Это произошло главным образом из-за того, что интересы современных исследователей из традиционных для классической науки областей переместились туда, где обычный “житейский” опыт и знания об объектах и происходящих с ними явлениях в большинстве случаев отсутствуют.
Постулаты Эйнштейна. Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна. Первый является естественным обобщением принципа относительности Галлилея с механических на все без исключения явления природы и может быть сформулирован как утверждение о невозможности наблюдателю, находящемуся в замкнутой системе отсчета, при помощи какого-либо физического (а значит и любого другого) опыта установить, покоится ли его система отсчета или находится в состоянии равномерного прямолинейного движения. В пользу этого постулата свидетельствует обширный житейский опыт, показывающий, что находящийся в закрытом помещении (трюме корабля) наблюдатель не в состоянии зарегистрировать факт его движения не только в результате постановки механических опытов, но и с помощью своих ощущений, в основе возникновения которых лежат, как известно, электрохимические процессы. Вторым постулатом Эйнштейна является утверждение о постоянстве скорости света, неоднократно проверявшееся не только Майкельсоном, но и впоследствии в более точных экспериментах.