В. В. Корухов
В последние годы вопрос о существовании пределов применимости современных физических теорий становится весьма актуальным, особенно в связи с формированием новых представлений о ранней, плотной и горячей, стадии эволюции Вселенной [1]. Аналогичный вопрос возник в свое время при анализе конечной стадии квантового испарения черных дыр. В результате испарения, когда масса испаряющейся частицы становится равной массе самой черной дыры, появляется квантово-гравитационный объект с планковскими значениями параметров: т ~ 10–5 г, 1 ~ 10–33 см [2]. Дальнейший анализ эволюции этого объекта оказался невозможным из-за отсутствия последовательной релятивистской квантово-гравитационной теории. В настоящее время большие надежды на решение данных проблем связывают с возможностью построения единой теории, существенную роль в которой должны играть фундаментальные константы ћ (постоянная Планка), с (скорость света), G (гравитационная постоянная) и k (постоянная Больцмана), а также их комбинации – планковские величины.
Анализируя спектр излучения абсолютно черного тела, М.Планк в 1899 г. ввел в теорию постоянную ћ, названную затем квантом действия. Он отметил, что из этой константы ћ, скорости света с и гравитационной постоянной G можно, пользуясь размерностью, образовать абсолютную систему единиц – длины, массы и времени.
lpl = (ћG / c3 )1/2 = 1,62·10–33 см,
mpl = (ћc/G)1/2 = 2,18·10–5 г, (1)
tpl = (ћG/c5)1/2 = 5,4·10–44 c.
По замыслу автора, такая система должна была сыграть важную роль в построении единой физики, выступая в качестве универсальной системы физических единиц. Однако метрологический смысл, вкладываемый Планком в эти величины, оказался не связанным с обычными физическими представлениями. Численные значения указанных величин на много порядков (кроме значения массы) отличались от тех, с которыми имела дело физика того времени. По-видимому, именно это обстоятельство и послужило причиной их долгого забвения.
По мере развития основных физических теорий – квантовой физики и теории относительности – постепенно начало складываться убеждение в том, что планковские величины (1) служат границей применимости классической общей теории относительности (ОТО) [3]. В частности, Дж.Уилеру принадлежит идея квантовых флуктуаций метрики с возможным изменением топологической структуры пространства-времени на малых расстояниях, где становятся существенными гравитационные флуктуации метрических коэффициентов: gmn ~ lpl /L ® 1 при L ® lpl [4].
Проблематичность применения релятивистской квантовой теории в области планковских масштабов связана также с необходимостью корректного учета гравитационных эффектов, когда сравниваются электромагнитные и гравитационные взаимодействия [5]. Характерный пример ограничения на возможную область “работы” квантовой теории и теории относительности следует из их известных принципов запрета.
Действительно, минимальная область локализации (принципиальная достижимая точность измерения) частицы подчиняется принципу неопределенности Гейзенберга:
Dx @ ћ/mc (2)
и соответствует максимальному релятивистскому импульсу (р = mc) в системе покоя частицы [6]. При этом точность измерения пространственной характеристики частицы ограничена ее комптоновской длиной волны
l і ћ/mc (3)
Далее, согласно представлениям ОТО, минимальная область пространственной локализации объекта с массой М определяется для удаленного неподвижного наблюдателя в наиболее простом случае решением Шварцшильда. Получение информации ограничено гравитационным радиусом
L і rg = 2GM/c2 (4)
Разрешенная для наблюдения область параметров реальных объектов, подчиняющихся неравенствам (3) и (4), представлена на диаграмме ML (см. рисунок). Точка пересечения граничных условий неравенств находится в области планковских значений. При 1 = L, m = М имеем
lpl ~ (ћG/c3 )1/2, mpl ~ (ћc/G)1/2.
Планковская масса играет роль минимальной структурной единицы со стороны макрообъектов и максимального значения для массы элементарных частиц, иначе говоря, представляет собой “последний предел локализации” [7].
“Биография” lpl как гравитационной границы применимости релятивистской квантовой теории достаточно богата “событиями” [8].
Обычно считается, что область “работы” теории квантовой гравитации, куда в качестве равноправных входят константы ћ, с и G, связана именно с малыми масштабами. Однако современной физике уже давно известны объекты больших масштабов, в описании которых используется этот полный набор констант.
Действительно, существует продел максимальной массы белых карликов, обусловленный наличием релятивистского вырожденного электронного газа (продел Чандрасекара),
MCh ~ mpl3/mp2 (5)
где тp – масса протона. При дальнейшем увеличении плотности этих объектов нарушается условие равновесия; приводящее к образованию нейтронных звезд. Характерное предельное значение для массы нейтронной звезды, соответствующее релятивистскому вырожденному нейтронному газу (предел Ландау – Оппенгеймера – Волкова) [9] можно представить в виде
MLOV ~ mpl3/mn2 (6)
где тn – масса нейтрона. Относительно недавно в связи с положительными результатами исследований по обнаружению массы покоя нейтрино было получено значение максимальной массы устойчивого образования, отождествленного со скоплением галактик и обусловленного наличием релятивистского вырожденного нейтринного газа [10],
Mn ~ mpl3/mn 2 (7)
где тn – масса покоя электронного нейтрино [11].
Обращает на себя внимание возможность существования материального ряда, связывающего элементарную ферми-частицу, принадлежащую к объектам микромира, с предельной по массе равновесной структурной конфигурацией макромира:
Mi ~ mpl3/mi2 (8)
Рассматривая в качестве предположения справедливость этой закономерности и для более тяжелых ферми-частиц, мы приходим к пределу, когда Mi ® mpl при m ® mpl. Объекты макро- и микромира смыкаются в области планковских значений. Это еще раз указывает на возможность существования предела для дискретного спектра масс элементарных частиц и нижней границы макроструктуры нашей Вселенной.
Важным моментом современного состояния проблемы планковских величин является введение в физику новых предельных значений и их взаимное согласование через известные и общепринятые связи параметров объектов и явлений. М.А.Марков предлагает в качестве универсального закона природы принять существование предельного значения плотности материи rpl, соответствующей планковской плотности и равной c5/G2ћ [12]. Максимальное значение температуры Tpl = k–1 (c5ћ /G)1/2, впервые рассмотренное в работе А.Д.Сахарова [13], было связано с предельным значением ускорения apl @ (c7/ћG)1/2 [14] посредством выявленной недавно связи релятивистского ускорения объекта и его температуры (эффект Унру) [15]. На предельный характер планковской массы как максимальной массы элементарной частицы указывалось уже давно [16]. Возможность рассмотрения современной физикой гипотетических объектов с планковскими параметрами mpl, lpl позволила на законном основании ввести новый класс частиц – планкеоны [17], максимоны [18], геоны [19]. Принципиального отличия в параметрах между этими объектами нет.
Обращает на себя внимание отсутствие общего определения планковских величин. В дальнейшем планковской величиной будем называть любую физическую величину, составленную согласно размерности из фундаментальных констант ћ, с, G и k [20]:
Xpl = ћa Ч cb Ч Gg Ч kd (9)
Согласно этому определению, запишем некоторые новые величины: гравитационный потенциал j G = с2 (a = g = d = 0, b = 2); электрический потенциал j e = c2G–1/2 (a = d = 0, b = 2, g = –1/2); скорость vpl = с (a = g = d = 0, b = 1); действие А = ћ (b = g = d = 0, a = 1); электрическое сопротивление R = с–1 (a = g = d = 0, b = – 1): энтропия S = k (a = b = g = 0, d = 1) и т.п. Как видим в значении максимального электрического потенциала отсутствует величина заряда. Впервые на эту особенность обратили внимание M.А.Марков и В.П.Фролов [21]. Они и указали на предельный характер рассматриваемого потенциала.
Все работы, посвященные исследованию предельных величин, не касаются тех сложных моментов, которые связаны с трудностями интерпретации понятия предельности физической величины. Это обусловлено тем обстоятельством, что проблема носит принципиальный характер и требует более глубокого анализа природы фундаментальных констант. Единственная планковская величина, вопрос о предельности которой является актуальным в настоящее время, – скорость света. Зачастую предельное значение любой физической величины трактуется как невозможность получения какой-либо информации об этой величине за данным пределом. Полагая реально существующими планковские значения физических величин, мы с необходимостью приходим к возникновению ряда противоречий, в частности с некоторыми следствиями специальной теории относительности (СТО).
Действительно, согласно СТО, плотность вещества объекта (например, элементарной частицы) при v ® с стремится к бесконечности, тогда как существует инвариантное планковское значение плотности rрl; размер любого объекта в направлении движения при v ® с стремится к нулю, в то время как существует инвариантное планковское значение длины lpl. Подобное противоречие, связанное с появлением в физике инвариантной величины скорости света, было снято созданием СТО. При этом, согласно правилу сложения скоростей релятивистских объектов, суммарная скорость для инерциального наблюдателя ограничена инвариантной величиной планковской скорости – скоростью света. Аналогичную интерпретацию могут иметь и некоторые другие планковские величины. Указанные выше противоречия устраняются, например, введением в СТО дополнительной, известной из других теорий инвариантной физической величины.
В качестве одной из возможностей рассмотрим, к каким следствиям приводит введение в СТО планковского значения гравитационного потенциала j G = c2. В наиболее явном виде эта процедура представлена в работе X.-Ю. Тредера [22].