Смекни!
smekni.com

О принципиальной возможности аксиоматической перестройки произв0льн0й научной теории (стр. 4 из 5)

Исходя из этих двух примеров можно сформулировать суть проблемы, требующей аксиоматического объяснения. Четыре дифференциаль-ных уравнения Дирака есть не что иное, как аксиомы его волновой теории электрона, а переменные в них - не что иное, как базовые понятия этой теории. Но, как мы знаме, аксиомы однозначно определяют базовые ПОНЯТИЯ И наоборот. Как же тогда может быть, что, не меняя уравнений-аксиом, Дирак менял понятия? Аналогично, как Бор и Розенфельд, не меняя аксиом-уравнений, Максвелла, меняли физическое содержание переменных в них, т.е.понятия?

Для того, чтобы разобраться в этом вопросе нужно еще раз углубиться в суть самого аксиоматического подхода. А именно в вопрос о том, как мы делаем выводы из аксиом. Мы делаем их по правилам вывода, которые называем дедуктивными. Но откуда взялись эти правила и что они из себя представляют? Я утверждаю, что эти правила есть не что иное,как аксиомы /или выводы-теоремы из них/ некой метатеории. Точнее, как будет показано в дальнейшем, речь идет о многих даже бесконечном числе метатеорий, вклады-вающихся одна в другую в соотношении метатеория-метаметатеория-метаметаметатеория и т.д. Но пока ограничился метатеорией так сказать первого порядка и покажем на примерах, что правила вывода из аксиом сами есть аксиомы метатеории. Лучшим примером для этого может служить весь тот материал, который рассматривает В. Степин в своей книге, начиная с механики Ньютона и кончая современными физическими теориями. Реальное создание научных теорий, их генезис, по В. Степину /и тут я с ним вполне согласен/ представляет из себя попеременное употребление генетических /конструктивных/ и аксиоматических приемов. Причем в качестве аксиоматического В.Степин рассматривает только дедуктивные построения на базе аксиом /а я говорю, что сюда относится и является даже главной частью и само формулирование аксиом и поня-тий и выяснение их соответствия эмпирие - но не об этом сейчас речь/. А в качестве главного образца этого дедуктивного построения он рассматривает "движение внутри математического формализма", то бишь в данном случае в основном это решение дифференциальных уравнений или их преобразования. А что из себя представляют правила решения дифферещиальных уравнений или их преобразования? А не что иное, как аксиомы или выводы из них - теоремы математи-ческой теории / в принципе аксиоматической/ именуемой в узкой, начальной своей области дифференциальным исчислением или в рас-ширении - матанализом, исчислением бесконечно малых и т.д., с от-ветвлениями в виде теории дифференциальных уравнений и т.п.

Итак показано, что правила получения выводов из аксиом внутри аксиоматической теории являются сами аксиомами /или выводы из них/ некой метатеории. Аксиомами, естественно, отличными от базовых аксиом рассматриваемой теории. Например, аксиомы дифференциального исчисления, разработанные тем же Ньютоном, это не аксиомы его же механики, хотя для того, чтобы получить выводы из 2-го закона Ньютона /одной из аксиом его механики/: F=md’’s/dt, мы решаем это дифференциальное уравнение по правилам-аксиомам метатеории - дифференциального исчисления. Уточним здесь понятие метатеории. С одной стороны это теория, область действия которой накрывает и превосходит область действия данной. Скажем исчисление бесконечно малых применимо не только в механике Ньютона или физи-ке вообще, но и в биологии и в экономике, т.е. везде, где оправ-дано допущение непрерывности и дифференцируемости, /причем только там, где это допущение оправдано, и поэтому эта метатеория не применима для каждой области даже физики, не говоря об экономике и биологии/. С другой стороны метатеория не является заменой, альтернативой теории, для которой она служит мета. Она не трогает ее аксиом, она,если можно так выразиться, индеферентна к ним. Этим она отличается от вкладывающихся /или охватывающих друг друга/ теорий сменяющцих друг друга в процессе развития науки, как, скажем, Эйнштейновская механика в отношении Ньютоновской, у которых аксио-мы и понятия одной заменяют аксиомы и понятия другой, или как в случае кинетической и классической теории газов, большая теория дает основание, дедуктивный вывод аксиом меньшей /частной/ теории (но не правила вывода из них).

Как сказано выше, существует не одна метатеория. Это следует хотя бы из того, что в современной физике используются далеко не только дифференциальные уравнения в качестве математического аппарата. Но, что нам важно здесь отметить и показать, это сущест-вование вкладывающихся друт в друга метатеорий, т.е. метаметатеорий и т.д. Это следует хотя бы из того, что при аксиоматичес-ком построении самой метатеории, т.е. при получении выводов из ее аксиом, мы опять же пользуемся некими правилами вывода, которые есть аксиомы /или следствия из них/ теперь уже метаметатеории, и т.д. до бесконечности. Такими метатеориями /метамета...мета/ могут служить одна для другой различные разделы математики, скажем, алгебра для дифференциального исчисления /но не теория пределов, которая относится к дифференциальному исчилению, как кинематичес-кая теория газов к классической, т.е. дает обоснование аксиом/, затем различные логики для математики и, наконец, различные логи-ки одна для другой. Ясно , что в этом движении вверх по метатеориям мы рано или поздно должны дойти до таких, которые еще не созданы. Как же тогда мы делаем выводы в той теории, для которой еще не созданная служит мета. Мы делаем их на основе непровозглашенных допущений, принятостей, "очевидностей", которые есть не что иное, -как непроявленные аксиомы этой еще не развитой метатеории. Я ограничусь здесь этим декларативным заявлением на эту тему, не доказывая и не иллюстрируя его, т.к. исследова-ние метатеорий, важное само по себе уводит нас излишне от основ-ной темы. Возвращаясь к ней, теперь можно ответить на выше задан-ный вопрос, как может быть, что Дирак менял физическое содержа-ние понятий в своей теории, не меняя аксиом /и то же самое де-лали Бор и Розенфельд/.

Ответ в том, что уравнения сами по себе, любые уравнения, в том числе и Дирака или Бора и Розенфельда, без физической трактовки входящих в них переменных не являются аксиомами ника-кой физической теории, но лишь некоторыми выводами в метатеории, именуемой дифференциальным исчислением. Например, если в математи-ческой записи второго закона Ньютона

f - не сила, m - не масса и s - не перемещение, то это вовсе и не запись второго закона Ньютона, а просто дифференциональное уравнение определенного типа относительно произволь-ной функции S / t / , удовлетворяющей только требованиям непрерывности и дифференцируемости.

Поэтому когда Дирак меняет физическую трактовку переменных в своих уравнениях, то он меняет не только базовые понятия, но и сами аксиомы, сохраняя только математическую форму ях записи, своего рода матрицу, в которую отливаются аксиомы данной теории. А это уже не противоречит аксиоматическому подходу, при котором мы варьируем аксиомы вместе с основными понятиями до тех пор, пока не получим соответствие эксперименту и отсутствие парадок-сов /которое равносильно непротиворечивости и, в конечном счете, тому же соответствию эксперименту/. Разница же по сравнению с генезисом теорий в классической физике здесь только в том, что мы заранее принимаем не только метатеорию т.е. математический аппарат но и вид уравнений, служащих матрицей для наших аксиом /но не сами аксиомы/. Основанием для этого служит наличие боль-шего количества уже наработанного материала в виде развитых, формализованных, если не до аксиоматического вида, то по крайней мере до применения математических формализмов, теорий для разных смежных областей, позволяющее заимствовать из них по аналогии формы-матрицы для аксиом новой области или, пользуясь языком В.Степина, математические формализмы.

Кстати, сам В.Степин понимает, что математические уравне-ния без указания физического смысла их переменных не есть, как он пишет, "физические законы"(10). Поэтому я затрудняюсь сказать, рассматривает ли сам В.Степин эту поднятую им проблему, как возражение против принципиальной аксиоматичности.

Но дело не в том, как понимал сам В.Степин соответствующие места его книги, а в том, как могут воспринимать и воспринимают их другие. Кроме того разбор проблем генезиса научной теории, поднятых В.Степиным, помогает мне уточнить и развить сам аксиоматический /модельный/ подход к познанию, что я и делаю здесь.

Еще одна проблема, поднятая В.Степиным и требующая аксио-матической разборки, это влияние так называемой "картины мира" на научную, в частности физическую, теорию /теоретическую схему по В.Степину/. Картиной мира В.Степин называет самые общие физические представления, посылки или допущения, принимаемые за основу при разработке глобальных теорий. Так ньютоновская механика базируется среди прочих, например, на представлении /допущении/ дальнодействия, т.е. мгновенного действия силы на любом расстоянии, в то время, как электродинамика Максвелла базируется на картине мира, исходящей из взаимодействия, передаваемого от точки к точке, т.е полевом взаимодействии. Картинномирные допущения являются универсальными, т.е. действующими во всех областях физики /естествознания/ без исключения /откудаи название/. Поэтому, скажем, когда утвердилась электродинамика Максвелла, то ее картину мира стали распространять и на механику