Смекни!
smekni.com

Проникающая радиация Воздействие на людей, здания и технику (стр. 2 из 3)

В подвижных объектах для защиты от проникающей ра­диации необходима комбинированная защита, состоящая из легких водородсодержащих веществ и материалов с высокой плотностью. Без специальных противорадиационных экранов, например, средний танк имеет кратность ос­лабления проникающей радиации, равную примерно 4, что недостаточно для обеспечения надежной защиты экипажа. Поэтому вопросы защиты личного состава должны ре­шаться выполнением комплекса различных мероприятий.

Наибольшей кратностью ослабления дозы проникающей радиации обладают фортификационные сооружения (пе­рекрытые траншеи — до 100, убежища — до 15000).

В качестве средств, ослабляющих действие ионизирую­щих излучений на организм человека, могут быть исполь­зованы различные противорадиационные препараты (ра­диопротекторы).

3. Радиоактивное заражение местности, приземного слоя атмосферы и объектов

Радиоактивное заражение местности, приземного слоя атмосферы, воздушного пространства, воды и других объ­ектов возникает в результате выпадения радиоактивных ве­ществ из облака ядерного взрыва.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к ме­сту взрыва, но и на расстоянии десятков и даже сотен ки­лометров от него. В отличие от других поражающих фак­торов, действие которых проявляется в течение относитель­но короткого времени после ядерного взрыва, радиоактив­ное заражение местности может быть опасным на протяже­нии нескольких суток и недель после взрыва.

Наиболее сильное заражение местности происходит при наземных ядерных взрывах, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излуче­нием и проникающей радиацией. Сами радиоактивные ве­щества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть изменена какими-либо физическими или химическими ме­тодами.

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30— 50 мкм, принято называть ближним следом заражения. На больших расстояниях — дальний след — небольшое заражение местности не влияет на боеспособность личного со­става.

Источниками радиоактивного излучения при ядерном взрыве являются: продукты деления (осколки деления) ядерных взрывчатых веществ (Pu-239, U-235 и U-238); радиоактивные изотопы (радионуклиды), образующиеся в грунте и других материалах под воздействием нейтронов — наведенная активность; неразделившаяся часть ядерного заряда.

Рис 1. Пример радиоактивных превращений двух осколков деления ядра урана-235

Продукты деления, выпадающие из облака взрыва, представляют собой первоначально смесь около 80 изото­пов 35 химических элементов средней части периодической системы Д. И. Менделеева: от цинка (№ 30) до гадолиния (№64). Почти все образующиеся ядра изотопов перегру­жены нейтронами, являются нестабильными и претерпе­вают b-распад с испусканием g-квантов. Первичные ядра осколков деления в последующем испытывают в среднем три-четыре распада и в итоге превращаются в стабильные изотопы. Таким образом, каждому первоначально образо­вавшемуся ядру (осколку) соответствует своя цепочка ра­диоактивных превращений. Пример последовательных превращений, по двум цепочкам, когда их «родоначаль­никами» являются изотопы циркония 9740Zr и теллура 13752Те, приведен на рис. 1, где показано, что каждое радиоактив­ное ядро, образовавшееся при делении, распадается с испусканием b-частиц и g-квантов до тех пор, пока не обра­зуется стабильный изотоп. Всего на разных этапах радио­активного распада возникает около 300 различных радио­нуклидов.

Суммарная активность смеси продуктов деления Аb, Ки, через 1 мин после взрыва может быть определена по фор­муле

где qдел — тротиловый эквивалент взрыва по делению, т.

В системе СИ активность измеряется в беккерелях (Бк), 1 Бк равен одному распаду в секунду (1 Ки = 3,7*1010Бк).

Изотопный состав смеси осколков деления зависит от вида ЯВВ, использованных в ядерном заряде, и от време­ни, прошедшего после взрыва.

Изменение активности во времени, как и уровней ра­диации на местности или плотности заражения, определя­ют по формуле

где аои Atактивность осколков деления ко времени t0 и t после взрыва.

По мере увеличения времени, прошедшего после взры­ва, величина активности осколков деления быстро падает.

Образование наведенной активности в грунте в пре­делах зоны распространения нейтронов имеет практическое значение при воздушном ядерном взрыве. В грунте в ос­новном образуются радиоактивные Al-28, Na-24, количе­ство которых пропорционально выходу нейтронов при взрыве данного ядерного заряда. Максимальное количе­ство нейтронов на единицу мощности заряда образуется при взрыве нейтронного боеприпаса.

Активность неразделившейся части ядерного заряда следует учитывать только в случае аварийных взрывов ядерных боеприпасов или при их ликвидации взрывом обычного ВВ.

При наземном ядерном взрыве светящаяся область ка­сается поверхности земли и образуется воронка выброса. Значительное количество грунта, попавшего в светящую­ся область, плавится, испаряется и перемешивается с ра­диоактивными веществами. По мере остывания светящей­ся области и ее подъема пары конденсируются, образуя радиоактивные частицы различной величины. Сильный про­грев грунта и приземного слоя воздуха способствует образованию в районе взрыва восходящих потоков воздуха, которые формируют пылевой столб («ножку» облака). Когда плотность воздуха в облаке взрыва станет равной

Рис. 2. Схема наземного ядерного взрыва:

Л — активность; Н — высота подъема верхней кромки облака; Дв— вертикальный размер облака; Дг - горизонтальный диа­метр облака: qмощность взрыва; Vскорость среднего ветра; Rрасстояние от центра взрыва

плотности окружающего воздуха, подъем облака прекра­щается. При этом в среднем за 7—10 мин облако достига­ет максимальной высоты подъема H, которую иногда на­зывают высотой стабилизации облака (рис. 2, табл. 3).


Таблица 3

Зависимость высоты подъема и размеров радиоактивного облака от мощности ядерных взрывов

Мощность взрыва. тыс. т Высота подъема облака, км Размеры облака, км
горизонтальный диаметр высота
1 3,5 2,0 1,3
5 5,0 3,0 1.6
10 7,0 4,0 2,0
30 9,0 5,0 3,0
50 10,5 6,0 3,5
100 12,2 10,0 4,5
300 15,0 14,0 6,0
500 17,0 18,0 7,0
1000 19,0 22,0 8,5
5000 24,0 34,0 12,0
10000 25,0 43,0 15,0

В каждой точке следа, например в точке А, находящей­ся на удалении R от центра взрыва, выпадают радиоак­тивные частицы разного размера; средний размер частиц уменьшается по мере удаления от места взрыва.

На местности, подвергшейся радиоактивному зараже­нию при ядерном взрыве, образуются два участка: район взрыва и след облака (рис. 3). В свою очередь в районе взрыва различают наветренную и подветренную стороны.

Рис. 3. Схема радиоактивного заражения местности в районе взрыва и по следу движения облака

Причиной заражения местности в районе взрыва явля­ется оседание осколков деления и образование наведенной активности. Плотность заражения местности, уровни ра­диации на ней, а значит, и дозы до полного распада радио­активных веществ на границах зон заражения убывают с удалением от центра взрыва. Радиус района взрыва не превышает 2 км. С подветренной стороны заражение ме­стности в районе взрыва увеличено за счет наложения на след облака.

Границы зон радиоактивного заражения с разной сте­пенью опасности для личного состава можно характери­зовать как мощностью дозы излучения (уровнем радиа­ции) , Р/ч, на определенное время после взрыва, так и до­зой до полного распада РВ,Р.

По степени опасности зараженную местность по следу облака взрыва принято делить на следующие четыре зоны.

Зона А — умеренного заражения. Дозы до полного рас­пада РВ на внешней границе зоны Д= 40 Р, на внутрен­ней границе Д=400Р. Ее площадь составляет 70—80% площади всего следа.

Зона Б —сильного заражения. Дозы на границах Д = = 400 Р и Д=1200 Р. На долю этой зоны приходится примерно 10% площади радиоактивного следа.