.
Гайсин Р.
В последнее время проблема хаоса как стихии, в которой зарождаются упорядоченность и организация, привлекли к себе внимание исследователей. Особый интерес здесь вызывает наметившаяся тенденция объектом рассмотрения делать противоречие между “конкурентным” и “кооперативным” поведением, которое прослеживается в ходе анализа функциональной организации неравновесных сред. Конкурентное поведение - это основа хаоса. Кооперативное - значит организованное. Переход от одного к другому рассматривается как основное направление эволюции окружающего нас мира. Возникновение новых структур требует приводящего к хаосу разрушение старых. Во Вселенной, это зачастую носит характер гигантских катаклизмов. Именно им обязано возникновение всех химических элементов, а значит и земная форма жизни.
Вопрос о взаимосвязи, взаимоотношении порядка и хаоса рассматривался неоднократно. Тем не менее имеется ряд вопросов которые еще недостаточно прояснены. Например, как часто в различных областях познания встречаются порядок и хаос? Каков характер их распределения? Подобные вопросы не тривиальны. Данная статья представляет собой попытку вычленить соотношение понятий “порядок” и “хаос” с концепцией множественности миров.
Мы не станем обсуждать здесь проблемы, которые поднимаются и решаются при формальном подходе к порядку и хаосу. Нас интересует качественная сторона дела, и, обращаяськ ней, мы с самого начала сталкиваемся с двумя взаимосвязанными аспектами: онтологическим и гносеологическим. Порядок и хаос-это феномены, которые существуют объективно. Онтологически в них различаются те или иные количественные характеристики, относящиеся к числу элементов системы, ее структуре, связям между системой и внешним миром и т.д. Гносеологические аспекты носят уже во многом субъективный характер и определяются наличными возможностями в познании изучаемых реалий, способностями, навыками, интуицией человека и т.д. В таком случае закономерно возникает вопрос о том, какие возможны формы опытного взаимодействия объекта с субъектом при познании подобных фрагментов материалъного мира. К этому вопросу примыкает и другой: можно ли применять понятие порядка (то есть устойчивого, повторяющегося, воспроизводящегося свойства во множестве явлений) по отношению ко Вселенной, которая является объектом космологии и существующая, быть может, не в единственном экземпляре? Специфика возможного взаимодействия нашей метагалактики с другими вселенными (предположительно через “белые” и “черные” дыры и др), безусловно, наложила бы свой отпечаток как на процесс и результат познания законов других вселенных, так и на понимание универсальных характеристик, черт, законов нашей собственной Метагалактики.
Уже сегодня крупные ученые спорят о методологии (что важнее: детерминированный аттрактор или случайные флуктуации), не выделяя при этом главное : детерминированность - свойство гипотетических замкнутых систем; незамкнутые системы - не вполне детерминированы; математическая неустойчивость системы является лишь указанием на то, что рассматриваемую систему нельзя считать замкнутой в области неустойчивости. Среди рассматриваемых физиками объектов на самом деле нет ни одного, который можно было бы считать полностью изолированным от внешних воздействий, т.е. замкнутой системой. Понятие замкнутой физической системы удобно в той мере, в которой можно пренебречь внешним воздействием на рассматриваемую систему за рассматриваемое время. Значит, если рассматривать достаточно большие времена, то многие важные свойства любой доступной нашему наблюдению системы будут определяться ее незамкнутостью, а попытки объяснить поведение незамкнутой системы, исходя только из ее внутренних свойств, неизбежно заведут в тупик.
Когда мы говорим открытая система, то подразумеваем открытую диссипативную систему ( ОДС ) с циклопричинной связью ее частей, способную к самоорганизации. Эта способность возможна благодаря использованию потоков негэнтропии- потоку энергии, освобождающейся в ходе разложения высокоорганизованной материи в низкоорганизованную, т.е. благодаря способности ОДС к сегрегации энтропии. Циклопричинность в отличии от линейной причинности есть влияние на исходную причину через петли обратной связи, когда коллективные моды макроуровня (параметры порядка) воздействуют на микроуровень, который в свою очередь формирует свойства макроуровня. Другие события, пусть даже энергетически интенсивные, могут оказаться абсолютно невлиятельными из-за удаленности энтропийного горизонта и их некогерентности, “несовместимости” с системными процессами, Поэтому данный процесс будет “недостижим” для них.
Открытых диссипативных систем в природе много, и каждая из них использует негэнропийный поток, освобождающийся в процессе деградации других систем. В этом плане перспективным выглядит синтез космогонии и синергетики. Рассматривая ОДС как некие пробные миры, мы можем измерять качественные изменения в них динамикой энтропии (переход ”порядок- хаос”). Окружающий человека мир начинает выступать как совокупность развивающихся систем, каждой из которых присущи определенная целостность, структурность, стабильность, упорядоченность и, следовательно, необходимые, существенные внутренние отношения (законы, в соответствии с которыми данная система функционирует и развивается). Процесс развития каждой конкретной системы характеризуется рядом необходимых этапов : возникновением, становлением, зрелостью, упадком, разложением. Безусловно, распад, исчезновение системы не будет означать полного хаоса и произвола. Как было сказано выше, постольку, поскольку имеют место потоки энергии и энропии, имеет место и упорядоченность. Моменты разрушения целостности любой системы сопровождается активным процессингом информации (как известно, хаотический аттрактор может служить в качестве эффективного процессора информации), в которой будут учтены все “предложения” следующей диссипативной структуре. Срабатывание каждой системы в ответ на полученную информацию приводит к росту энропии системы. Однако итог этого срабатывания - либо приобретение системой вещества и негэнтропии и преобразование их в необходимые структуры, либо спасение от разрушительных воздействий-экономия негэнтропии, либо удаления ее избытка, либо расход ее на разрушение и удаление отработавших структур. Накопление негэнтропии любой системой далеко не всегда является обязательным условием. Такая иллюзия возникла из-за реального ее дефицита и самопроизвольного ее убывания. На самом деле баланс негэнтропии, как и других существенных переменных, изменяется в направлении, обеспечивающем существование открытой системы в изменяющихся условиях.
Термодинамика разбивает все существующие системы по способам, которыми они обеспечивают свое существование на два класса: существующие за счет стабильности и существующие за счет лабильности. Стабильные системы сохраняются за счет равновесия с окружающей средой. Лабильные системы достаточно широко представлены в природе – от потоков молекулярной диффузии до межгалактических потоков. Для любой диссипативной структуры принципиально важно, что из нее выносится энтропия. Именно этот факт (наряду с притоком энергии) является основной причиной упорядочивания. Иначе говоря, такого рода упорядоченность свойственна именно открытым (незамкнутым) системам, причем упорядовающую роль играет некое внешнее воздействие. Представляется естественным использовать концепцию внешней стохастизации, согласно которой в диссипативных процессах имеет место не производство энтропии, а ее поступление в неустойчивую систему извне. Нет оснований заранее полагать, что невозможно существование систем в некотором смысле устойчивых относительно внешней стохастизации. Именно такие результаты были получены при моделировании свойств, например, классической кулоновской плазмы. Плазма рекомбинировала (электроны с ионами образовывали атомы) лишь при аномально сильном внешнем стохастическом воздействии 4. Такие системы с трудом “усваивают” энтропию, поступающую извне.
Чтобы разобраться в причинах подобного явления, обратимся к примеру, который приводит М.Эйген 5. По его подсчетам число изомеров только одной молекулы ДНК кишечной палочки составляет примерно 101000000 . В то же время число атомов во всей видимой Вселенной имеет порядок “всего” 1080 . Всравнении с числом изомеров только одной молекулы величина разнообразия молекул, известных науке, представляется совершенно ничтожной : неорганических – 105, органических – 106, синтетических – 107. Это относится не только к химическим соединениям – на всех структурных уровнях (атомарном, молекулярном, минеральном, ландшафтном, биологическом) реализована совершенно ничтожная часть возможных комбинаций. И дело отнють не в недостатке “сырья”, ибо на разных уровнях существует множество однотипных систем. Отсюда видно, что каждый существующий в природе вид систем должен обладать совершенно уникальными свойствами, отвечающими сверхжесткому критерию существования. Из изложенного следует, что определяющей для существующих систем является их функциональная характеристика, говорящая о том, может ли система своими реакциями обеспечить свое существование как некого микрокосмоса. Математически это выражается в потенциальных возможностях системы по изменению характера ее аттрактора, что может приводить к изменению характера поведения не только в пространстве, но и во времени.
Вхождение в понятие времени с точки зрения современной синерге-тической парадигмы, мы можем разделить на два подвопроса : о времени в глобальном смысле –макровремени масштаба Вселенной и микровремени-внутреннем историческом времени системы, времени в локальном смысле. По Пригожину, внутреннее время –это не точка “сейчас” и не параметр, а скорее “индивидуальный” фактор целого, это среда обитания “суммативной целостности” объекта, в отличии от пространства – коллективного фактора сосуществование его частей. Концепция внутреннего времени тесно переплетена с иерархичностью синергетически организованных систем. Время становится неким сквозным принципом связности и синергизма открытых систем Вселенной. Поэтому в новом видении любая частица микромира предстает включенной в космическую иерархию систем разного уровня организации и характера процессов в них. Чтобы обеспечить свое существование, любая реальная система должна представлять собой микрокосм, уровновешивающий все воздействия на него ближнего и дальнего Космоса. Отражение же Космоса, т.е. всей совокупности систем, в каждой системе вновь возвращает нас к древней мудрости: “Все отражено во всем”.