Однако в последнее время предпринимаются попытки доказать возможность получения, например, протяженного отрезка из непротяженных точек. Так,
А. Грюнбаум считает, что современная теория точечных множеств позволяет «преодолеть противоречивый характер утверждений о том, что положительный линейный интервал состоит из непротяженных элементов - точек». Эти толкования не в состоянии помочь А. Грюнбауму избежать основной трудности – доказать возможность получения протяженной длины из непротяженных каких бы то ни было объектов, ибо не столь важно, какова их конкретная природа или названия, но важно то, что они не обладают протяженностью.
На аналогичных позициях находился и Б. Рассел, считавший точку и момент объектами, не имеющими измерений. Однако, по его мнению, из бесконечного континуального множества этих объектов состоят реальное пространство и время. Б. Рассел утверждал, что если отбросить идеи об актуально бесконечных малых, трудности бесконечности и непрерывности, дескать, исчезают, а «… аргументы Зенона, в большинстве своем веские, не поднимают серьезных затруднений».
Оценивая подобного рода подходы к решению обсуждаемой апории Зенона, С. Яновская, на мой взгляд, правильно подчеркивала, что «таким образом отнюдь не решаются гносеологические трудности, связанные с неконструктивностью «построения» протяженных объектов в виде актуально-бесконечных (к тому же еще и несчетных) множеств непротяженных элементов». Некорректность подобных решений анализируемой апории должна быть ясна из того, что суммирование какого угодно множества не обладающих протяженностью точек не дает нам хоть какой-нибудь минимально протяженной величины: «Ведь сколько раз ни повторять ничто, ничего и не получится». Однако, если располагать актуально бесконечными малыми, но реальными протяженными какими-то квантами пространственно-временного типа, то, опираясь на движение и свойство отражения объектов, можно получить сколь угодно протяженные конечные тела.
2.1.5. Понимание меры множества в современной математике.
Данная апория показала, что нельзя определить меру отрезка как сумму мер «неделимых», что понятие меры множества вовсе не является чем-то очевидно заключенным в самом понятии множества и что мера множества, вообще говоря, не равна сумме мер его элементов. Теперь мы определяем меру множества при помощи покрытий его системами интервалов, причем понимается, что интервалы уже имеют определенную длину (меру).
Затронутые нами проблемы прерывности и непрерывности, конечного и бесконечного, пространства и времени при анализе зеноновской метрической апории (создание протяженного тела из непротяженных точек) непосредственным образом примыкают к кругу вопросов, связанных с апориями движения, также сформулированными знаменитым элейцем. Этих апорий четыре: «Дихотомия» и «Ахиллес» затрагивают трудности понимания движения при предположении неограниченной делимости пути и времени, а «Стрела» и «Стадий» выражают затруднения при обратных предположениях, то есть при допущении неделимых элементов пути и времени (проблема квантов пространства и времени).
2.2. Апории относительно движения.
Аргументы о движении известны нам только по краткому разбору их Аристотелем в «Физике» и комментариям Симплиция, Филопона и Фемистия. Симплиций утверждает, что он имел в своем распоряжении сочинение Зенона, и его комментарии относительно множества подтверждают это. Но комментарии о движении, хотя по некоторым замечаниям очевидно, что он знал и эту часть сочинения, не содержат ничего нового, отличного от Аристотеля, возможно, из-за общепризнанной трудности этих аргументов. Филопон и Фемистий тоже лишь повторяют аристотелевские суждения.
Пусть АВ – отрезок длины 1 и точка М движется из А в В. Прежде чем дойти до В, она должна «отсчитать» бесконечное множество «середин» А1 , А2, … , Аn , … ; значит, точка В никогда не будет достигнута. Движущееся тело никогда не достигнет конца пути, потому что оно должно сначала дойти до середины пути, затем до середины остатка пути и так далее.
2.2.2.2. Соображения античных математиков.
Гегель дает следующий комментарий аргументам Зенона: «Зенон здесь указывает на бесконечную делимость пространства: так как пространство и время абсолютно непрерывны, то нигде нельзя остановиться с делением… Движение оказывается прохождением этого бесконечного количества моментов; оно поэтому никогда не кончается, движущееся, следовательно, не может дойти до своего конечного пункта».
Аналогичные соображения можно найти и у Аристотеля. Гегель справедливо отмечает, что уже Аристотель наметил правильный путь решения данной апории Зенона, обратив внимание на то, что пространство и время не актуально разделены бесконечным образом, а лишь потенциально делимы до бесконечности. На эту важную мысль Аристотеля обратил внимание В.И. Ленин, конспектируя «Историю философии» Гегеля: «Движущийся к цели должен сначала пройти половину пути к ней. А от этой половины сначала её половину и так далее без конца.
Аристотель ответил: пространство и время бесконечно делимы (в возможности)… но не бесконечно разделены (в действительности)…»
Развивая идею Аристотеля о непрерывности как непрерывной делимости, а не актуализированной разделенности, Гегель писал: «Делимость как возможность есть всеобщее, в ней положены как непрерывность, так и отрицательность, или точка, но положены как моменты, а не как сами по себе». Гегель, стало быть, рассматривает делимость как возможность деления.
2.2.2.3. Логическая несостоятельность вывода Зенона.
Один из математических вопросов, связанных с данной апорией, состоит в следующем: допустимо ли пользоваться актуальной бесконечностью, допустимо ли, например, рассматривать весь натуральный ряд уже построенным и ввести некоторое новое, трансфинитное число, следующее за всеми натуральными?
Теория множеств Г. Кантора (70-е гг. XIX века) отвечает на этот вопрос положительно. Кантор определяет порядковые трансфинитные числа. Если воспользоваться ими, можно сказать, что точка М достигает А1 в момент t1, А2 - в момент t2 , … , Аn - в момент tn , а точка В - в момент tω , где ω – первое число, следующее за всем натуральным рядом. Заметим, что Р. Бэр с помощью точно такой же конструкции ввел первый трансфинит ω, который и является порядковым типом множества натуральных чисел. Однако с введением теории множеств затруднения, связанные с актуальной бесконечностью, вовсе не были преодолены. Они приняли только другую форму и вновь выступили в виде парадоксов теории множеств. В одном из них, так называемом парадоксе Бурали-Форти, рассматривается порядковый тип множества всех порядковых типов. Приписывание ему порядкового номера приводит к противоречию. В настоящее время существует точка зрения, согласно которой свободное оперируемое с актуально бесконечными множествами, даже счетными, неправомерно.
2.2.3. Апория «Стадий» («Стадион»).
Пусть по стадиону движутся по параллельным прямым равные массы с равной скоростью, но в противоположных направлениях. Пусть ряд А1, А2, А3, А4 означает неподвижные массы. Ряд В1, В2, В3, В4 означает массы, движущиеся вправо, а ряд Г1, Г2, Г3, Г4 означает массы, движущиеся влево.
Будем теперь рассматривать массы Аi, Вi, Гi , как неделимые. В неделимый момент времени Вi и Гi проходят неделимую часть пространства. Действительно, если бы в неделимый момент времени некоторое тело проходило более одной неделимой части пространства, то неделимый момент времени был бы делим, если же меньше, то можно было бы разделить неделимую часть пространства. Рассмотрим теперь движение неделимых Вi и Гi друг относительно друга: за два неделимых момента времени В4 пройдет две неделимые части Аi и одновременно отсчитает четыре неделимых части Гi , то есть неделимый момент окажется делимым.
Этой апории можно придать и несколько другую форму. За одно и то же время t точка В4 проходит половину пути отрезка А1А4 и целый отрезок Г1Г4 . Но каждому неделимому моменту времени отвечает неделимая часть пространства, проходимая за это время. Тогда в некотором отрезке α и 2α содержится «одинаковое» число точек, «одинаковое» в том смысле, что между точками обоих отрезков можно установить взаимно однозначное соответствие. Этим впервые было установлено такое соответствие между точками отрезков различной длины. Если считать, что мера отрезка получается как сумма мер неделимых, то вывод является парадоксальным.
2.2.3.2. Логическая ошибка в основе апории «Стадий»
скрывается за неявно выраженным нарушением логических законов построения мыслей. Это нарушение состоит в подспудном признании взаимной относительности движения тел А1 и А2, поскольку в апории все же идет речь о движении тела А1 относительно тела А2(или наоборот), при одновременном явном отрицании этой относительности, так как игнорируется такой параметр этого движения, как скорость ω реляционного движения, равная сумме модулей скоростей υ1 и -υ2 движений тел А1 и А2 по отношению к телу А0. В явном виде логически противоречивая структура данной апории может быть представлена формулой
х ( P(x) ÙùP(x) ), где лишь исключающие друг друга пропозициональные функции означают одновременно признание и отрицание предикатов относительности и реальности реляционного движения тел А1 и А2.