Смекни!
smekni.com

Современные теории происхождения жизни (стр. 2 из 3)

В той первой капле в подкипящем состоянии (250 – 200 оС и 50 атм.) первая тетрамерная спиральная цепочка связанной с жестким силикатным субстратом воды, совершенно случайно оказалось левовращающей (с той же вероятностью она могла быть и правовращающей). На ней была синтезирована первая аминокислота, которая уже не случайно получилась левовращающей. К первой тетрамерной цепочке присоединилась вторая, тоже левая, как и синтезированная на ней аминокислота, то есть все последующие аминокислоты становились левовращающими. И так последовательно заработал водно-матричный механизм синтеза сразу хирально-чистой аминокислотной органики.

Однако одновременно с левовращающими «разворачивались» и правовращающие тетрамерные цепочки связанной воды, на которых позднее начался синтез менее термостойких сахаров – основы нуклеиновых кислот. Такой синхронный синтез полипептидов и полинуклеотидов неумолимо вел к образованию сложных нуклеопротеидных комплексов с записью в их примитивной РНК однозначного генетического кода.

Итак, главным фактором хирального очищения органики и возникновения генетического кода живого вещества Земли могло быть лишь одно из необычайных свойств воды, а именно ее собственная рацемичность. Следует отметить также, что в принятых сейчас сценариях биопоэза синтез рацемичной предбиологической органики происходил в уже существовавшем океане, в котором позднее произошла хиральная катастрофа.

В интерпретации же Ю. А. Колясникова все началось с самой первой капли, и далее шла стремительная экспансия бульонной пленки с синтезом в ней сразу хирально-чистой органики, что исключает маловероятную хиральную катастрофу. В результате на поверхности планеты образовался первобытный Солярис, огромная сеть бульонной пленки состоящей из предбиологического органического вещества.

С появлением в первом вулканическом катаклизме 4 млрд. лет назад на поверхности планеты свободной воды, уцелевшие фрагменты первобытного Соляриса дезинтегрировались в плазмиды, прионы и наноразмерные нуклеопротеидные комплексы. Избегая прямого контакта с чуждой им объемной политетрамерной водой, последние сворачивались, формируя белковые капсулы с РНК внутри них. Следовательно, вторым этапом биопоэза можно считать образование в первичной гидросфере бесчисленного множества разнообразных протовирусов, вироидов и прочих.

Позднее появились мембраны разного состава, а на их основе возникли первые клетки как вполне автономные истинно живые системы. Но и те, и другие продолжали использовать в своей жизнедеятельности первичную водную матрицу, обеспечивающую ускоренный синтез их биополимеров.

Возникновение жизни в глубинах гидротермальных систем.

В настоящее время большинство ученых придерживается традиционных представлений о зарождении жизни в древнем теплом океане. Однако ряд открытий сделанных в последние одно-два десятилетия, главным образом крупнейшими микробиологами мира указывает на несколько иной порядок вещей. К. Везе, обобщая данные по эволюции микроорганизмов, расположил данную группу в основании бактериального филогенетического дерева. Таким образом, все прокариоты разделились на две группы - архебактерий и эубактерий. В ходе дальнейших исследований выяснилось, что архебактерии и эубактерии являются параллельными ветвями, развившимися из общей гипотетичной предковой формы - Прогенота. Реконструирование главных характеристик Прогенота, проведенное К. Везе, привело к вполне определенному выводу: наш общий предок существовал при температуре кипения воды, т. е. был гипертермофилом. Однако кроме проблемы температуры среды, в которой зародилась жизнь, существует и другая, более важная проблема: проблема понимания существа и причинности процессов, приводящих к возникновению простейших форм жизни.

Путь к решению данной проблемы на взгляд автора пролегает через комплекс идей и концепций, рассматривающих явления самоорганизации природных систем. В основании этого направления лежит сформулированная в рамках неравновесной термодинамики теория диссипативных структур. К классу диссипативных структур относятся все без исключения биологические и социальные системы, а также некоторые химические и физические системы, в которых существуют незатухающие динамические явления. Фактически в рамках теории диссипативных структур сформулирован целый ряд универсальных законов появления, развития и отмирания природных систем, которые справедливы в частности и для широкого класса биологических систем.

Кратким итогом сказанного выше являются три основных требования к среде, в которой зародилась жизнь:

1. Среда должна быть высокотемпературной;

2. В ней должны были происходить сильные колебания термодинамических и физико-химических параметров.

3. Среда должна быть жидкой.

Рассмотрим на основе этих критериев возможные среды, в которых могла возникнуть жизнь.

На планете Земля известны две жидкие глобальные геологические системы - гидросфера, объединяющая приповерхностные воды, главная масса которых сконцентрирована в океане и гидротермальные системы, представляющие обычно высокотемпературные глубинные потоки растворов, составленные из ювенильных и вадозных вод. Общее сопоставление химического состава планетарного океана и усредненного состава гидротермальных источников показывает наличие большого сходства. Эта особенность является естественной, поскольку океан формировался за счет мощных гидротермальных излияний в ходе геологического развития Земли.

Переходя ко второму критерию среды возникновения жизни - ее высокотемпературности - следует сделать выбор из этих двух сред в пользу гидротермальных систем. Хотя следует отметить, что критерий высокотемпературности не позволяет сделать окончательный выбор между океаном и гидротермальными системами, так как в случае исходно горячей Земли первичный океан тоже должен быть достаточно горячим.

Третье требование к среде - сильная неравновесность - является ключевым. Требования сильной неравновесности среды, необходимой для спонтанного возникновения явлений самоорганизации, означает наличие в среде сильных флуктуаций. Амплитуда флуктуаций должна быть велика для преодоления критического рубежа, за которым начинаются процессы самоорганизации. При небольших колебаниях параметров относительно средних равновесных значений никакой самоорганизации не происходит, последняя возникает только вдали от состояния равновесия. Оценивая с этих позиций степень возможных флуктуаций в океане можно сказать, пользуясь терминологией неравновесной термодинамики, что океан находится в состоянии аттракции, или относительно (подвижного) равновесия, которое характеризуется небольшими колебаниями параметров вокруг равновесных значений.

Принципиально иными в рассматриваемом аспекте являются гидротермальные системы. Кардинальное отличие гидротермальных систем от океана заключается в том, что они обладают собственной мощной энергетикой. Вследствие избытка свободной энергии в системе периодически происходит накопление напряжений, выражающееся в возрастании интенсивных параметров (температуры и давления). Так же периодически накопленные разряжаются, приводя к увеличению экстенсивных параметров – объема преобразованного растворами минерального вещества. Такая внутренняя активность гидротермальных систем и вызывает постоянные и различные по амплитуде флуктуации, поддерживающие состояние неравновесности.

Таким образом, наиболее вероятной средой для возникновения жизни являются глубокие области гидротермальных систем (от глубин в несколько километров до поверхности). Эта область характеризуется:

1. наличием высокотемпературной жидкой, существенно водной среды;

2. существованием в ней мощных динамических возмущений, и флуктуаций термодинамических и физико-химических параметров;

3. присутствием разнообразного растворенного и дисперсного органического вещества.

Эту зону автор рассматривает как своеобразный природный инкубатор, в котором зародились первичные эмбриональные формы протожизни.

Энергия и происхождение жизни на Земле.

Энергия и вещество. Химическая эволюция.

Звездный нуклкосинтез.

В процессе гравитационного коллапса звезд гравитационная энергия превращается в тепло и энергию световых квантов, инициируя реакцию слияния протонов в a-частицы. Дальнейшее сжатие и сопровождающий его разогрев звезды создают условия для синтеза из a-частиц ядер углерода. В этих процессах высвобождается громадное количество энергии – намного больше чем при изменении гравитационной энергии. Это происходит за счет превращения вещества в энергию в реакциях нуклеосинтеза.

В CN-цикле протоны сливаются в a-частицы, при этом углерод выступает в роли катализатора. Кроме того, a-частицы могут и непосредственно взаимодействовать с ядрами кислорода, порождая ядра неона, магния, кремния и серы. В процессе фоторасщепления ядер энергия электромагнитного излучения инициирует образование и более тяжелых ядер вплоть до ядер железа.

Таким образом, в образовании химических элементов участвуют источники энергии четырех типов: гравитационной, тепловой, ядерной и энергии световых квантов.

Образование малых молекул.

Химические элементы образовавшиеся в ходе звездного нуклеосинтеза, объединяются друг с другом при относительно низких температурах на поверхности твердой коры планеты и образуют широкий спектр малых молекул. Под действием потоков энергии (молнии, УФ-излучение, вулканическое тепло) наиболее стабильные молекулы (СО2, N2, Н2О) превращаются в более сложные соединения (сахара, и аминокислоты) которые становятся «строительными блоками» жизни.