Смекни!
smekni.com

Проблема абстракции в математике (стр. 2 из 4)

Во всей истории математики можно выделить три больших исторических этапа в развитии ее абстракций. На первом этапе, связанном с возникновением арифметики и геометрии, отвлекаются от конкретной, качественной природы объектов. На втором этапе, когда вводится буквенная символика и происходит переход к алгебре, стали отвлекаться уже от конкретных чисел и величин. Наконец, на третьем этапе, связанном с переходом к современной математике, стали отвлекаться не только от конкретной природы объектов, но и от конкретных зависимостей между ними. Так, например, под операцией умножения теперь понимают не только умножение чисел, но и векторов, множеств каких-либо объектов («пересечение» множеств) и даже предложений (в математической логике). Таким образом, переменными здесь становятся не только объекты исследования, но и сами операции над ними.

Третья особенность математической абстракции состоит в значительном использовании так называемых идеальных объектов. Уже «точка», «прямая», «плоскость» Евклидовой геометрии представляют идеальные объекты, так как образуются посредством идеализации. Если же идеализацию понимать несколько шире, а именно как процесс образования таких понятий, которые или выражают свойства реальных объектов в искаженном виде, или приписывают им свойства, отсутствующие у них, тогда можно будет с известным основанием утверждать, что непосредственным объектом исследования математики являются именно абстрактные, или идеальные, математические объекты. Разумеется, что эти объекты не плод чистой фантазии. Они, как и вся математика в целом, служат для познания действительности. Но математика оперирует ими именно как идеальными объектами.

По существу такими же идеальными объектами являются понятия математической бесконечности потенциальной и актуальной. При образовании этих понятий приходится прибегать к различным абстракциям осуществимости. Использование различных абстракций осуществимости составляет четвертую важную особенность математического познания. В частности эти абстракции осуществимости ведут к разным понятиям бесконечности, которые в свою очередь порождают различные философские направления, такие как интуиционизм, конструктивизм и т. д., о чем подробнее будет сказано ниже.

Пятая важная особенность, непосредственно связанная с предыдущими, состоит в том, что многие системы абстракций в математике, возникнув на базе опыта и практики или даже в процессе чисто логического развития теории, не требуют в дальнейшем обращения к опыту. Действительно, в математике повсюду оперируют одними лишь абстракциями, т. е. обращаемся прежде всего к логике, а по к эксперименту, как это часто имеет место в естествознании.

2. Абстракция актуальной бесконечности.

Сущность абстракции актуальной бесконечности состоит в отвлечении от незавершенности и незавершимости процесса образования бесконечного множества, от невозможности за­дать такое множество посредством полного перечисления его элементов. Согласно абстракции актуальной бесконечности, в беско­нечном множестве можно выделить (индивидуализировать) каждый его элемент. Но на самом деле зафиксировать и описать каждый элемент бесконечного множества принци­пиально невозможно. Абстракция актуальной бесконечности и представляет собой отвлечение от этой невозможности, что позволяет рассматривать, например, отрезок прямой как бес­конечное множество точек, каждую из которых можно инди­видуализировать, обозначив ее каким-то действительным чис­лом.

Понятие актуальной бесконечности возникает с по­мощью процесса идеализации. В данном случае идеализация дает возможность применять к бесконечным множествам простой и хорошо изученный аппарат классической логики. Этот аппарат возник и вполне оправдал себя при исследовании конечных множеств. Идеализированный характер акту­альной бесконечности состоит в том, что о бесконечном множестве рассуждают по аналогии с конечными множествами. Кроме того, здесь абстра­гируются от конкретных способов построения элементов бесконечного множества и даже допускают, что все его элементы существуют одновременно, а не возникают в процессе построения.

Поскольку актуальная бесконечность представляет со­бой чрезвычайно сильную абстракцию, то с пониманием ее связан целый ряд трудностей. Прежде всего ин­туиция восстает против представления бесконечности и виде завершенного процесса. Завершенность бесконечно­сти нередко понимается как ее уничтожение. Так, напри­мер, натуральный ряд чисел обычно мыслится как не­ограниченно продолженный, и интуиции нелегко свыкнуться с представлением о законченности этого ряда.

Еще Аристотель возражал против использования и науке понятия актуальной бесконечности, ссылаясь на то, что известен способ счета только на конечных мно­жествах. Он указывал, что конечное число разрушается актуальной бесконечностью.

Разбирая возражения, Кантор указывает, что и с бесконечными множествами можно производить некото­рые действия счета, если определенным образом упорядо­чить их. Разница будет состоять только в том, что если для конечных множеств порядок элементов не влияет па результат счета, то для бесконечных множеств он зави­сит от способа их упорядочения. Часто отмечали также, что актуальную бесконечность нельзя целиком объять в мысли, так как она предполагает сосчитанным бесконеч­ное множество. Возражая против этого, еще Б. Больцано заметил: чтобы вообразить целое, нет необходимости представлять отдельно его части.

Понятие актуальной бесконечности приводит к чрезвычайно неожиданным следствиям, например, утверждение, что для бесконечных множеств аксиома «часть меньше цело­го» теряет свою силу. Действительно, еще в XVII в. Галилей заметил, что квадраты целых положительных чисел могут быть поставлены во взаимноднозначное соответствие с самими положительными числами, и следовательно, эти множества эквивалентны.

Все эквивалентные множества обладают определенным общим свойством, которое можно выделить с помощью аб­стракции отождествления. Это свойство в математике при­нято называть мощностью множества. В случае конеч­ных множеств она совпадает с количеством элементов. В случае же бесконечных множеств, указывает Кантор, нельзя говорить о каком-либо точном определенном коли­честве их элементов, но зато им можно приписать опре­деленную, совершенно не зависящую от их порядка мощ­ность.

Воспользовавшись понятием мощности, можно оп­ределить бесконечное множество как множество, равномощное с какой-либо своей частью, или, как говорят математики, собственным подмножеством. Например, мно­жество натуральных чисел будет равномощно с множе­ством квадратов натуральных чисел, или с множеством всех четных чисел, или с множеством чисел, кратных 3, 5, 7, или вообще нечетных чисел и т. д. И множество квадратов целых чисел, и множество четных чисел так же, как и нечетных, составляют лишь часть множества натуральных чисел, но тем не менее они эквивалентны целому множеству. Обычно такого рода примеры вызы­вают недоумение у тех, кто впервые приступает к изуче­нию теории множеств. Кажется невозможным, чтобы часть множества была эквивалентна целому. На этой ос­нове и возникает критическое отношение к актуальной бесконечности.

На первый взгляд может показаться, что все существующие бесконечности имеют только одну мощность. Множества и натуральных, и рациональных, и алгебраи­ческих чисел являются счетными множествами. Прибавление к таким множествам любого числа конечных, или счетных, множеств дает в итоге счетное множество. Даже умножение на счетное множество не выводит за пределы счетных множеств.

Однако если сравнить мощность натурального ряда чисел с мощностью всех действительных чисел или мно­жеством всех точек отрезка прямой, то обнаружится, что они неравномощны. И множество всех действительных чисел, и множество точек отрезка имеют мощность боль­шую, чем мощность счетного множества. Поэтому действительные числа, как и точки отрезка, нельзя «пересчи­тать» с помощью натуральных чисел. Мощность множе­ства действительных чисел, или точек отрезка, или любой геометрической фигуры, содержащей по крайней мере одну линию, принято называть мощностью континуума. Кантору не удалось обнаружить множеств, мощность которых была бы промежуточной между мощностью счетного множества и континуума. Поэто­му он высказывал предположение, что континуум непосредственно следует за мощностью счетного множества. Решение этой знаменитой континуум-гипотезы долгое время не поддавалось ника­ким усилиям, и в свое время она была названа Гильбер­том одной из важнейших нерешенных проблем матема­тики. В 30-с годы К. Гёдель установил, что континуум-гипотеза не может быть опровергнута, исходя из аксиом теории множеств. П. Коэн, развивая идеи Гёделя, доказал, что континуум-гипотеза независима от других аксиом теории множеств. Иными словами, исходя из указанных аксиом, она не может быть ни доказана, ни опровергнута.

Таким образом, добавление к аксиомам теории множеств как континуум-гипотезу, так и противоположное ей ут­верждение, никогда не приведет к логическому проти­воречию. Выходит, что могут существовать разные тео­рии множеств, в одних из которых континуум-гипотеза выполняется, в других нет. В этом открытии Коэна нетрудно обнаружить аналогию с открытием неевклидовой геометрии, когда стало ясно, что аксиома параллельных независима от остальных аксиом абсолютной геометрии.

Благодаря трудам Кантора и его последователей поня­тия и методы теории множеств заняли прочное место в математике. Теория мно­жеств дает возможность анализировать с единой точки зрения все математические науки: ведь элементами мно­жеств могут быть всевозможные математические объек­ты — и числа, и фигуры, и функции и т. п. Такая общность избавляет от необходимости доказывать, теоремы для частных видов математических объектов. Все эти до­казательства можно проводить теперь в общем виде.