Смекни!
smekni.com

Значение принципа системности в познавательной деятельности. Гносеология и онтологические схемы науки (стр. 4 из 8)

Описание системы будет неполным без характеристики взаимодействия системы и среды. Среда — “то есть объекты, которые, будучи внешними по отношению к системе, участвуют в формировании ее интегрированных свойств опосредованно через отдельные элементы системы или системы в целом”.

Задавая системные качества, мы конкретизируем внешние факторы, участвующие в диалоге “система —среда”.

Введем обозначения: Х — множество входных значений (значения внешних факторов, воздействующих на систему), С — множество состояний системы, У — множество выходных значений (параметры системы, реагирующие на изменения внешних факторов).

Большинство систем изучаемых естествоиспытателями, динамические, то есть развивающиеся во времени. Поэтому взаимоотношения удобнее исследовать на временной оси Т={t}.

Характер взаимодействия системы и среды отражается следующими соотношениями между Х, С и У:

p t : Ct x Xt -> Yt (реакция системы)

jt : Ct x Xt -> Ct’ (функция перехода состояний, t<=t*<t’)

Значения p, j, а также величин С и Х позволяет точно предсказывать выходные значения У, то есть не только удовлетворительно описывать функционирование системы, но и прогнозировать ее поведение. Такие системы называются жестко детерминированными. Однако при изучении природных объектов исследователь обычно не располагает необходимой информацией о реакции системы, кроме того, сведения о входных воздействиях и состоянии системы могут оказаться неполными. М.Месорович и Я.Такахаря предлагают такие системы называть открытыми. Неопределенность открытых систем можно в некоторой степени уменьшить, если от точных значений Х и У перейти к множеству подмножеств П(Х) и П(У):

П(Х) -> П(У).

Последнее выражение расшифровывается так: некоторому классу входных воздействий соответствует вполне определенных класс входных значений. Дальнейшего прогресса в прогнозировании поведения таких систем можно добиться, если ввести дополнительную структуризацию П(Х) и П(У), то есть более строго определить характер взаимоотношений между классами входных и выходных параметров. Так, во многих случаях полезно обращение к идее о вероятностном воздействии среды (Х) и системы (С,У).[КВ1]

Ю.Г.Антонов предлагает выделять два типа вероятностных взаимодействий системы и среды: слабое и сильное. При слабом взаимодействии система и среда относительно независимы.

Так, если среде присущ вполне определенный закон распределения ее состояний ре, таким образом в системе этому закону может соответствовать некоторое множество законов распределения вероятностей ее состояний: {рs, рs ... рs}. По этой причине исследования подобных систем мало что дает для решения генетических задач.

Иная картина наблюдается при сильном вероятностном взаимодействии. Показатели организованности среды и системы достигают максимальной степени согласованности, а главное — адекватность между системой и средой устанавливается на уровне законов распределения рs и ре. Определенному закону ре соответствует единственный закон распределения вероятностей рs. Это обстоятельство предопределяет более глубокого познания природы внешних факторов даже в том случае, если они непосредственно ненаблюдаемы. Элементы, сильно взаимодействующие с одними и теми же факторами, тесно взаимосвязаны, а это в свою очередь, находит соответствующее отражение в структуре системы.

Итак, существование особых механизмов (например, функции Ct x Xt -> Yt или соотношения ре -> рs) фиксирующих в составе и структуре системы наиболее характерны особенности постоянно меняющейся среды, превращает системный анализ в высокоэффективный метод решения человеческий задач.

Первое целенаправленное применение системных методов в геологии осуществил В.И.Вернадский. Он сформулировал основные методологические положения:

Организованность — всеобщее свойство любых естественных тел, являющихся продуктами и агентами природных процессов.

Принципиальная допустимость любой фрагментаризации природы.

Выделение естественных тел — систем — это логическая процедура. Для любой логической процедуры характерны элементы схематизации, идеализации, что и обеспечивает переход от оригинала естественного тела, обладающего бесконечным множеством самых различных свойств, к его модели, учитывающей лишь некоторые из них.

Модели только тогда обладают познавательной ценностью, когда они построены с учетом и в соответствии с целями и задачами, возникающими в процессе научно-практической деятельности человека.

В рамках одной методологии реализуются два различающихся подхода, один конструктивный (система конструируется), другой — декларативный (любой сложный объект трактуется как система). Что увидеть различие воспользуемся определением системы А.И.Цепова: S=def[R(m)]P, где S — символ системы, состоящий из элементов m; R — взаимоотношения между элементами системы; P — некоторое важное для нас свойство системы, определяющее выбор (конкретизацию) системообразующего отношения R.

При конструировании системы в начале задают, исходя из некоторых содержательных соображений, свойство (или набор свойств) Р, определяющее специфику системы, затем отыскивают класс отношений R, согласующийся с этим свойство и, наконец формируют множество элементов {m}, на котором выполняется R. В этой ситуации в процедуру выполнения системы можно изобразить в виде последовательности P->R->S.

Выбор свойства Р во многом определяется той конкретной целью, которая преследуется геологом при проведении научных исследований и поисково-разведочных работ, а также спецификой научно-технических средств, применяемых для достижения этой цели. Изменение цели ведет к смене, переформулированию системной концепции.

Таким образом в основе конструктивного подхода лежат принципы, которые были зафиксированы в подходе В.И.Вернадского. Системность естественных тел как продуктов природных процессов (1), допустимость выделения множества геологических систем на одних и тех же природных объектов (2), модельный характер любого системного описания (3), целенаправленность системной фрагментаризации природы (4). Декларативный подход игнорирует все перечисленные выше принципы, кроме принципа (1) — который абсолютизируется. Любые продукты традиционной фрагментаризации природы (минералы, породы, осадочные бассейны, нефетегазоносные провинции и т.п.) объявляются системными объектами и лишь после этого предпринимаются поиски их эмерджентных свойств, а также их структурных характеристик. При таком подходе последовательность процедур системного анализа выглядит иначе, чем при конструировании систем S->P->R (задача структурирования) при S->R->P (задача выявления эмерджентности).

Методика системного решения задач нефтяной геологии.

Основные процедуры составляют взаимосвязанную последовательность операций, которые удобно разбить на четыре главных этапа:

I. Постановка задачи.

Включает вопросы: выяснение условий формирования геологических объектов, закономерности размещения месторождений и т.п. Осмысливание проблемы с точки зрения ожидаемых конечных результатов (формулирование цели), а также в методолгическом плане (формирование системной концепции Р) позволяет исследователю составить представление о характере, об объеме необходимой геологической информации. Поэтому следующей операцией является сбор, систематизация и хранение сведение об изучаемых геологических объектах.

II. Этап описания.

На этом этапе одна из основных процедур — конструирование геологических систем. В зависимости от стоящей перед исследователем задачи формируется система геологических признаков или система геологических тел. Этап включает три операции:

выбор объектов (признаков или тел) mЄM подлежащих системному исследованию;

выбор системообразующего решения R;

конструирование систем S1, S2,...,Sn, элементами которых являются mЄM.

Операции этого этапа легко формализуемы, поэтому реализуются специальными программами на ЭВМ.

III. Этап объяснения.

Основная задача этого этапа — содержательная интерпретация геологических систем, полученных на предыдущем шаге. Центральное место отводится нахождению общих факторов, под которыми в данном случае понимаются некоторые особенности среды, вызывающие вполне определенные взаимоотношение элементов, образующих систему. Задача состоит в выявлении и содержательной интерпретации факторов, управляющих корреляциями элементов, входящих в одну систему. Одним из основных методов решения этой задачи является специальный, то есть проводимы с геологических позиций анализ состава систем, сконструированных на основе фиксированных P и R.

Другим путем, позволяющим обнаружить и идентифицировать искомые общие (для данной системы) факторы, является вычисление и последующий геологический анализ величин (J), отражающих в определенной степени направление и интенсивность действия системообразующих факторов. Это путь реализуем только в рамках специальных методов исследования структуры корреляционных матриц. Значения J могут быть нанесены на геологическую карту, что позволяет соотнести их с тектонической обстановкой, увязать с распространением тех или иных осадочных, вулканогенных и других пород.