Смекни!
smekni.com

Философские вопросы математики (стр. 4 из 4)

В результате изучения различных функций в математике появились новые теории. Так немецкий математик Ф.Клейн и французский математик А.Пуанкаре создают теорию автоморфных функций, в которой находит замечательные применения геометрия Лобачевского. Французские математики Э.Пикар, А.Пуанкаре, Ж.Адамар, Э.Борель глубоко разрабатывают теорию целых функций. Геометрическую теорию функций и теорию римановых поверхностей развивают А.Пуанкаре, Д.Гильберт, Г.Вейль, немецкий математик К.Каратеодори, теорию конформных отображений - советские математики И.И.Привалов, М.А.Лаврентьев, Г.М.Голузин и др. На основе комплексных чисел возникает теория функций комплексного переменного. Общие основы этой теории были заложены О.Коши.

Выше приведенные примеры теорий функции показывают нам важность данного понятия в современной науке. Однако можно сделать ошибочный вывод (в силу множества абстрактных понятий, связанных с функцией) о том, что все эти теории не имеют никаких связей с окружающим миром. В действительности же эти связи имеют более сложные формы. Многие эти теории возникли не из-за запросов естествознания и техники, а из внутренних потребностей самой математики. Т. е. непосредственного отношения к окружающему миру эти теории не имеют. Они играют вспомогательную роль для прикладных наук.

Как мы уже выяснили, понятие “функция” в математике играет значительную роль. Посмотрим теперь на то, какую же роль играет это понятие в философии. Прежде всего следует заметить, что в философских словарях трактовки этого понятия трудно найти. Следовательно, можно сделать вывод, что это понятие в философии играет второстепенную роль. Однако, зависимость между элементами некоторых множеств, - как одна из смысловых сторон “функции”, имеет непосредственное отношение к окружающему миру.

В. И. Ленин писал: “Первое, что бросается нам в глаза при рассмотрении мира в целом – это взаимная связь всего существующего” (см. Ленин В.И. Пол. собр. соч. – Т. 20, с. 20).

Но далеко не все связи могут быть отражены в виде функциональных зависимостей (формул). Наиболее наглядно демонстрируют подобные связи в окружающем мире законы физики, которые могут быть записаны в виде формул. Это, например, второй закон Ньютона

, закон Гука
, законы Кеплера и многие другие законы, отражающие взаимозависимость окружающего мира.

Таким образом, функция, как и любое другое математическое понятие, непосредственно или опосредованно отражает окружающую нас действительность.

Заключение

Таким образом, проблемы реальности и существования в математике имеют неоднозначное истолкование в философии. Вопрос о соотношении понятий и утверждений математики и окружающей действительности был освещен с разных философских позиций. А именно, с точки зрения материализма и субъективного и объективного идеализма, эмпиризма и неопозитивизма. Каждое из вышеперечисленных философских течений имели разные взгляды на разрешение поставленного вопроса.

Проблема существования в математике также была представлена несколькими философскими направлениями: интуиционизмом, конструктивным материализмом и субъективным идеализмом. Каждое из этих направлений имело свою точку зрения на данную проблему. Разносторонность подходов к решению поставленных проблем говорит об их сложности и неоднозначности в толковании и разрешении.

В качестве примера одного из математических абстракций было рассмотрено понятие “функция”. Описана история возникновения данного понятия, неоднозначность в его толковании, роль и значение в современной науке.