Смекни!
smekni.com

Пространство и время (стр. 2 из 5)

3. От Исаака до Альберта

Вкратце познакомившись с мнением античных философов относительно пространства и времени, так как их точка зрения представляет скорее исторический интерес, двинемся дальше. Примем к сведению их порой оригинальные теории, но не станем спорить с классиками. Гораздо важнее для нас Декарт, “… доводы которого точно совпадают с положениями ранних греческих философов, сказал, что протяженность является сущностью материи, а, следовательно, материя имеется повсюду. У него протяженность – прилагательное, а не существительное, ее существительное – материя, и без своего существительного протяженность не может существовать. Для него пустое пространство также абсурдно, как счастье без чувствующего существа, которое счастливо” [4]. Можно констатировать, что для Декарта пространство, коль скоро они есть, заполнено материей, средой. И такую особенную среду Декарт изобрел, назвав ее “тонкой материей”. Для физиков второй половину прошлого века такой “тонкой материей” был эфир – некая среда, наполняющая пространство, относительно которой распространяются электромагнитные волны. Видимо, использовав такую аналогию, я не сильно искажаю понятие “тонкой материи” Декарта (за исключением, естественно, всего сказанного об колебаниях электромагнитного поля). Пространство надо было заполнить такой протяженной материей, причем эта материя практически не проявляется в нашем мире. Мне представляется, что тогда “токая материя” фактически ничем не отличается от пустоты.

Декарт, похоже, все же очень хотел исследовать пространство как таковое без вещества. Не удивительно, что прогресс в этой области был достигнут рационалистом, ведь возможность исследования пространства эмпирическими методами представляется на тот момент несколько сомнительной. Декарту принадлежит изобретение координатной плоскости. Это уже следующая степень абстракции после Евклида. За счет введения системы координат удалось свести геометрию к чисто аналитической дисциплине, не говоря о том, что сам метод координат играет решающую роль в современной релятивистской физике. Декартовы координаты, будучи определены при помощи тройки действительных чисел, совершенно четко показывают непрерывность пространства и его трехмерность. Выражаясь языком современной математики, после Декарта пространство стало многообразием, т.е. таким множеством элементов (точек), которое можно параметризовать при помощи набора действительных чисел. Утверждение о том, что пространство есть многообразие, является важнейшим положением современной физики.

Следующий принципиальный шаг был сделан с появлением механики Исаака Ньютона. Чтобы сформулировать законы динамики Ньютону пришлось обратиться к принципиальному вопросу, что есть пространство и время? Ему было необходимо просто-напросто дать определение этим понятиям, раз уж он строил аксиоматическую теорию наподобие евклидовой геометрии. На этом моменте следует остановиться подробнее, потому что, мне кажется, сами того не осознавая, большинство наших современников, изучавших в школе физику, но не занимающиеся ею профессионально, придерживаются именно ньютоновского взгляда на пространство и время. В нашей критике Исаака Ньютона будем следовать Эрнсту Маху [6], давшему, на мой взгляд, самую основательную оценку трудов великого англичанина.

Обратимся к первоисточнику [8]. “В изложенном выше имелось в виду объяснить, в каком смысле употребляются в дальнейшем менее известные названия. Время, пространство, место и движение составляют понятия общеизвестные. Однако необходимо заметить, что эти понятия обыкновенно относятся к тому, что постигается нашими чувствами. Отсюда происходят некоторые неправильные сужения, для устранения которых необходимо вышеприведенные понятия разделить на абсолютные и относительные, истинные и кажущиеся, математические и обыденные.

Абсолютное. Истинное и математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год…”. Этим определением Ньютон абсолютизирует время, как текущее вне зависимости от любых реальных процессов в природе. Далее в этом же тексте Ньютон говорит, что может не существовать точного стандарта времени на основе физических или астрономических явлений, из-за их несовершенства (в смысле точной неповторимости). “Создается впечатление, – пишет Мах [6], – что … Ньютон находится еще под влиянием средневековой философии, как будто бы он изменил своему намерению исследовать только фактическое”, время становится чем-то абстрактным, независящем от всякого измерения.

Что же касается пространства, то Ньютон пишет: “Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, останется всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное…”. Здесь представляется излишним комментировать это положение Ньютона, оно весьма аналогично его суждению о времени. Важно, что в “Началах …” различается абсолютное и относительное движения, причем это обсуждается автором очень тщательно.

Наверное Ньютон находился под влиянием Декарта, но выкинув “тонкую материю”, оставляет для своей механики только абстрактную жесткую и неподвижную систему координат, считая однако ее вполне реальной сущностью. Разделяя абсолютное и относительное движение, Ньютон даже сделал шаг назад по сравнению с Декартом, который еще раньше вполне правильно понимал относительность всякого движения. Возможно философские моменты довольно непоследовательны и искусственны, но не будем забывать, что задача Ньютона была совсем в другом – научиться описывать динамику тел. Успех механики был столь велик, что “судить победителя” научное сообщество взялось только два столетия спустя, когда началось внимательное осмысление фундаментальных положений теории Исаака Ньютона такими учеными как Ланге и Мах. Их идеи логично будет поместить здесь, т.к. во многом они вытекают из критики Ньютона.

Мах придерживался той точки зрения, что нелепо говорить о движении тела безотносительно других тел, измеряя движение лишь в абсолютном пространстве. Весь наш опыт ведь сводится к измерению лишь расстояний между отдельными предметами. Мах приводит парадокс. Предположим, что тело помещено в абсолютно пустое пространство, которое лишено даже сильно удаленных звезд, тогда нельзя понять находится ли наше тело в покое или к примеру вращается вокруг собственной оси кроме, как измерив центростремительное ускорение. Такой вывод строго следует из представлений об абсолютном пространстве у Ньютона, и можно выделить “абсолютно невращающуюся” систему отсчета в пустоте, что Мах как позицивист принять не мог.

Выход, который предлагает Мах следующий. Давайте сформулируем закон инерции (который собственно и определяет, что есть инерциальная система отсчета) иначе. “Вместо того, что относить движущееся тело к пространству (к какой-нибудь инерциальной системе), будем рассматривать непосредственно его отношение к телам мира, посредством которых только и можно определить систему координат”. Очень далекие друг от друга тела движутся с постоянными по величине и направлению (относительными) скоростями. Близкие тела, находящиеся “в более сложном отношении” или, мы бы сказали, взаимодействующие друг с другом и движутся уже с непостоянной относительной скоростью. Теперь “вместо того, чтобы говорить: расстояние и скорость массы в пространстве остаются постоянными, можно употреблять выражение, что среднее ускорение массы <…> относительно <всех других масс …> равно нулю” [6]. При этом ненулевое ускорение относительно ближайших тел будет скомпенсировано большим вкладом массивных удаленных объектов (звезд), которые с исследуемым телом не взаимодействуют. Поясним, что наше тело на самом деле свободно, а ускорение относительно соседей может быть из-за того эти самые соседние тела могут быть по каким-то причинам подвержены действию сил, и, тем самым, ускорены они. Удаленные массы во Вселенной “задают” инереицальн(ую/ые) системы отсчета.

Такая трактовка закона инерции Махом по истине относительная. Однако подразумевает некоторую космологию, хотя и не важно какую именно. На это Эрнст Мах отвечает, что быть может и не существует локальных законов типа ньтоновских, и, чтобы описывать даже движение тел в небольшом объеме, “невозможно отвлечься от остального мира.” Он далее замечает [6], “Природа не начинает с элементов, как вынуждены начинать с них мы. Впрочем, для нас счастье, если нам удается на некоторое время отвести взор от огромного целого и сосредоточиться на его отдельных частях.” Таким образом Мах исправляет идейные основания классической механики, констатируя, что в обыденности мы можем пользоваться законами Ньютона, понимая однако по-другому, что есть инерциальная система отсчета.

Оставим пока Маха и вернемся чуть назад во времени. (Мне очень трудно придерживаться хронологии и в то же время не разрывать логически изложение эволюции той или иной концепции.) Чтобы завершить разговор о пространстве и времени, как его представляли люди начала XIX столетия, надо обсудить некоторые субъективистские парадигмы. Наверное, во времена Юма возникло также новое причинное понимание времени, которое, упрощенно говоря, состоит в том, что время воспринимает нами как “параметр”, по которому упорядочиваются причина и производимое ею следствие. Вообще в это время мы видим, как наряду с вопросом о времени появляется вопрос причинности, но это уже лежит за пределами определенного мной реферата.