Смекни!
smekni.com

Зенон Элейский (стр. 2 из 2)

Аристотель усматривал в «дихотомии» скорее заблуждение, нежели парадокс, полагая, что его значимость сводится на нет «ложной посылкой.., будто невозможно пройти или коснуться бесконечного числа точек за конечный период времени». Также и Фемистий полагает, что «Зенон либо в самом деле не знает, либо делает вид, когда полагает, что ему удалось покончить с движением, сказав, что невозможно движущемуся телу за конечный период времени пройти бесконечное число положений». Аристотель считает точки лишь потенциальным, а не действительным бытием, временной или пространственный континуум «в реальности не делится до бесконечности», поскольку не такова его природа.

Ахилл

Во втором парадоксе движения рассматривается состязание в беге между Ахиллом и черепахой, которой при старте дается фора. Парадокс заключается в том, что Ахилл никогда не догонит черепаху, поскольку сперва он должен добежать до того места, откуда начинает двигаться черепаха, а за это время она доберется до следующей точки и т.д., словом, черепаха всегда будет впереди. Разумеется, это рассуждение напоминает дихотомию с той только разницей, что здесь бесконечное деление идет сообразно прогрессии, а не регрессии. В «Дихотомии» доказывалось, что бегун не может пуститься в путь, потому что он не может покинуть того места, в котором находится, в «Ахилле» доказывается, что даже если бегуну удастся тронуться с места, он никуда не прибежит. Аристотель возражает, что бег – это не прерывный процесс, как толкует его Зенон, а непрерывный, однако этот ответ возвращает нас к вопросу, каково отношение дискретных положений Ахилла и черепахи к непрерывному целому? Современный подход к этой проблеме заключается в вычислениях (либо методом сходящихся бесконечных рядов, либо простым алгебраическим уравнением), которыми устанавливается, где и когда Ахилл нагонит черепаху. Предположим, Ахилл бежит в десять раз быстрее черепахи, которая проходит 1 м в секунду и имеет преимущество в 100 м. Пусть х – расстояние в метрах, пройденное черепахой к тому моменту, когда Ахилл ее нагонит, а t – время в секундах. Тогда t = x/1 = (100 + x)/10 = 111/9 с. Вычисления показывают, что бесконечному количеству движений, которые должен совершить Ахилл, соответствует конечный отрезок пространства и времени. Однако самими по себе вычислениями парадокс не разрешается. Ведь сначала необходимо доказать утверждение, что расстояние – это скорость, умноженная на время, а сделать это невозможно без анализа того, что подразумевается под моментальной скоростью – понятием, лежащим в основе третьего парадокса движения.

В большинстве источников, где излагаются парадоксы, говорится о том, что Зенон вообще отрицал возможность движения, но иногда утверждается, что доводы, которые он отстаивал, были направлены лишь на доказательство несовместимости движения с постоянно оспаривавшимся им представлением о непрерывности как о множестве. В «Дихотомии» и «Ахилле» утверждается, что движение невозможно при предположении о бесконечной делимости пространства на точки, а времени на мгновения. В последних двух парадоксах движения утверждается, что движение равным образом невозможно и в том случае, когда делается противоположное предположение, а именно, что деление времени и пространства завершается неделимыми единицами, т.е. время и пространство обладают атомарной структурой.

Стрела

Согласно Аристотелю, в третьем парадоксе – о летящей стреле – Зенон утверждает: любая вещь либо движется, либо стоит на месте. Однако ничто не может пребывать в движении, занимая пространство, которое равно ему по протяженности. В определенный момент движущееся тело (в данном случае стрела) постоянно находится на одном месте. Следовательно, летящая стрела не движется. Симплиций формулирует парадокс в сжатой форме: «Летящий предмет всегда занимает пространство, равное себе, но то, что всегда занимает равное себе пространство, не движется. Следовательно, оно покоится». Филопон и Фемистий дают близкие к этому варианты.

Аристотель с наскока отмел парадокс «стрела», утверждая, что время не состоит из неделимых моментов. «Ошибочен ход рассуждений Зенона, когда он утверждает, что если все, занимающее равное себе место, находится в покое, и то, что находится в движении, всегда занимает в любой момент такое место, то летящая стрела окажется неподвижной». Трудность устраняется, если вместе с Зеноном подчеркнуть, что в каждый данный момент времени летящая стрела находится там, где она находится, все равно как если бы она покоилась. Динамика не нуждается в понятии «состояния движения» в аристотелевском смысле, как реализации потенции, однако это не обязательно должно приводить к сделанному Зеноном выводу, что раз такой вещи, как «состояние движения», не существует, не существует и самого движения, стрела неизбежно находится в покое.

Стадий

Больше всего споров вызывает последний парадокс, известный под названием «стадий», и он же труднее прочих поддается изложению. Тот его вид, в котором он дан Аристотелем и Симплицием, отличается фрагментарностью, и соответствующие тексты считаются не вполне надежными. Возможная реконструкция данного рассуждения имеет следующий вид. Пусть А1, А2, А3 и А4 – неподвижные тела равного размера, а В1, В2, В3 и В4 – тела, имеющие такой же размер, что и А, которые единообразно движутся вправо так, что каждое В минует каждое А за одно мгновение, считая мгновение наименьшим возможным промежутком времени. Пусть С1, С2, С3 и С4 – тела также равного А и В размера, которые единообразно движутся относительно А влево так, что каждое С проходит мимо каждого А тоже за мгновение. Предположим, что в определенный момент времени эти тела находятся в следующем положении друг относительно друга:

Отсюда очевидно, что С1 миновало все четыре тела В. Время, которое потребовалось С1 для прохождения одного из тел В, можно принять за единицу времени. В таком случае на все передвижение потребовалось четыре такие единицы. Однако предполагалось, что два момента, которые прошли за это передвижение, являются минимальными и потому неделимыми. Из этого с необходимостью следует, что две неделимые единицы равны четырем неделимым единицам.

Согласно некоторым толкованиям «стадия», Аристотель полагал, что Зенон совершил здесь элементарную ошибку, предположив, что телу требуется одно и то же время на прохождение мимо подвижного тела и тела неподвижного. Эвдем и Симплиций также интерпретируют «стадий» как всего лишь смешение абсолютного и относительного движения. Но если бы это было так, парадокс не заслуживал бы того внимания, которое уделил ему Аристотель. Поэтому современные комментаторы признают, что Зенон видел здесь более глубокую проблему, затрагивающую структуру непрерывности.

Другие парадоксы. Предикация. К числу более сомнительных парадоксов, приписываемых Зенону, относится рассуждение о предикации. В нем Зенон утверждает, что вещь не может в одно и то же время быть единой и иметь множество предикатов; таким же точно доводом пользовались афинские софисты. В Пармениде Платона это рассуждение выглядит так: «Если вещи множественны, они должны быть и подобными, и неподобными [неподобными, поскольку они не являются одним и тем же, и подобными, поскольку общее у них то, что они не являются одним и тем же]. Однако это невозможно, поскольку неподобные вещи не могут быть подобными, а подобные неподобными. Следовательно, вещи не могут быть множественны».

Здесь мы вновь видим критику множественности и столь характерный косвенный тип доказательства, и потому этот парадокс был также приписан Зенону.

Место

Аристотель приписывает Зенону парадокс «Место», похожие рассуждения приводят Симплиций и Филопон в 6 в. н.э. В Физике Аристотеля эта проблема излагается следующим образом: «Далее, если существует место само по себе, где оно находится? Ведь затруднение, к которому приходит Зенон, нуждается в каком-то объяснении. Поскольку все, что существует, имеет место, очевидно, что место тоже должно иметь место и т.д. до бесконечности». Считается, что парадокс возникает здесь потому, что ничто не может содержаться само в себе или отличаться от самого себя. Филопон добавляет, что, показав самопротиворечивость понятия «места», Зенон желал доказать несостоятельность концепции множественности.

Список литературы

Комарова В.Я. Учение Зенона Элейского. Попытка реконструкции системы аргументов. Л., 1988

Фрагменты ранних греческих философов, ч. 1. М., 1989