Как видно, понятие натурального числа, как и другие понятия, формируемые с помощью абстракции отождествления, представляют собой абстракцию от абстракции: от предмета мы переходим к классу эквивалентных (в каком-то отношении) предметов, а от этого класса - к свойству, общему для всех объектов, ему принадлежащих, т. е. эти объекты отождествляются по одному свойству, которое абстрагируется от прочих свойств.
Абстрагирование в математике часто выступает как многоступенчатый процесс, результатом которого являются абстракции от абстракций.
Рассмотрим еще несколько примеров.
Отношение сонаправленности лучей (плоскости или пространства) разбивает множество лучей на классы эквивалентности (классы сонаправленных лучей). Все лучи одного класса отождествляются по свойству одинаковости направления (отношению сонаправленности). По существу каждый класс сонаправленных лучей представляет собой одно направление. Но это направление определяется любым лучом (представителем) этого класса.
Отношение подобия фигур разбивает множество всех фигур на классы эквивалентности (классы подобных фигур). Все фигуры одного класса характеризуются одинаковостью формы. По существу каждый такой класс можно называть формой. Но эта форма определяется любой фигурой (любым представителем) этого класса.
В школьном обучении не всегда явно вычленяются все этапы абстрагирования. В частности, образование классов эквивалентности, как правило, протекает неявно. Наблюдается свойство у некоторых предметов данного рода или отношение между ними, которое затем абстрагируется от этих предметов и становится самостоятельным понятием. Часто, ничего не говоря о классах эквивалентности, мы сразу же пользуемся представителями этих классов. Проиллюстрируем это на примере.
Рассмотрим множество всевозможных направленных отрезков или пар точек плоскости или пространства (пару точек (А, В) можно изобразить в виде направленного отрезка с началом А и концом В). Установим в этом множестве отношение эквивалентности т. е. два направленных отрезка эквивалентны, если соответствующие лучи сонаправлены, а длины этих отрезков равны.
Так как это отношение является отношением эквивалентности, то оно порождает разбиение множества всех направленных отрезков на классы эквивалентности.
Теперь возможны два методически различных продолжения: а) каждый класс эквивалентности называть вектором (это по существу то же, что называть вектором параллельный перенос, так как класс эквивалентных пар точек определяет параллельный перенос); б)- называть вектором направленный отрезок, т. е. отождествить класс эквивалентности с любым его представителем.
Такое отождествление вполне правомерно, так как практически в физических и других приложениях векторов мы работаем не с классами эквивалентных направленных отрезков, а с теми или иными представителями этих классов, т. е. с направленными отрезками, исходящими из определенных точек.
Педагогический подход, состоящий в замене класса его представителем, направлен на понижение уровня абстрактности понятий (направленный отрезок - менее абстрактное понятие, чем класс таких отрезков).
Наряду с абстракцией отождествления при построении математических моделей действительности, а следовательно, и при обучении математике используется и такой специфический прием абстрагирования, как идеализация.
Под идеализацией имеется в виду образование понятий, наделенных не только свойствами, отвлеченными от их реальных прообразов, но и некоторыми воображаемыми свойствами, отсутствующими у исходных объектов. Это делается для того, чтобы посредством изучения идеализированных образов облегчить в конечном счете изучение их реальных прообразов.
Разъяснение этого в процессе обучения на конкретных примерах имеет важное воспитательное значение, раскрывая связь абстрактных, идеализированных понятий с реальным миром. Оно способствует также пониманию способа математизации, построения математических моделей реальных ситуаций.
Действительно, нигде в природе не встречается "геометрическая точка" (не имеющая размеров), но попытка построения геометрии, не использующей этой абстракции, не приводит к успеху. Точно так же невозможно развивать геометрию без таких идеализированных понятий, как "прямая линия", "плоскосгь",. "шар" и т. д. Все реальные прообразы шара имеют на своей поверхности выбоины и неровности, а некоторые несколько отклоняются от "идеальной" формы шара (как, например, земля), но если бы геометры стали заниматься такими выбоинами, неровностями и отклонениями, они никогда не смогли бы получить формулу для объема шара. Поэтому мы изучаем "идеализированную" форму шара и, хотя получаемая формула в применении к реальным фигурам, лишь похожим на шар, дает некоторую погрешность, полученный приближенный ответ достаточен для практических потребностей. Это должно быть доведено до сознания учащихся.
Особым видом идеализации является абстракция потенциальной осуществимости. Например, при построении натуральных чисел абстрагируются от того, что невозможно написать или назвать число, содержащее в десятичной записи слишком много цифр (например, 10 ). Нам достаточно допустить возможность, как только дошло до некоторого числа п, написания и следующего за ним числа п + 1. Точно так же при изучении геометрии, пользуясь изображениями лишь конечных участков (отрезков) прямой, мы допускаем возможность неограниченного продолжения их в обе стороны или допускаем возможность безграничного деления отрезка или других фигур.