Так, по данным спектрального анализа на поверхности Солнца атомов кислорода в 10 раз больше, чем атомов азота, причем кислород как известно тяжелее азота. Аналогично массивные звезды, соответствующие кислороду, гораздо более многочисленны, чем менее массивные звезды, соответствующие азоту.
Итак, мы показали основные черты подобия между атомами и звездами главной последовательности. Это подобие не может быть полным, поскольку атомы являются очень стабильными объектами, а обычные звезды эволюционируют и превращаются с течением времени в вырожденные объекты – белые карлики и нейтронные звезды. Именно нейтронные звезды ввиду их малых размеров (порядка 30 километров в диаметре), большой плотности, временной стабильности и сильного магнитного поля следует считать настоящими аналогами нуклонов – протонов и нейтронов. Совокупности нуклонов в атомах и молекулах образуют видимое нами вещество и точно также совокупности нейтронных звезд создают основу вещества, которое можно назвать звездной формой материи. В нашей Галактике это можно представить следующим образом: постепенно звезды будут приближаться к центру Галактики, из-за потери вращательного момента при взаимодействиях, превращаясь при этом в белые карлики и нейтронные звезды. Дальнейшие взаимодействия и сближения звезд уничтожат белые карлики как менее плотные объекты, так что останутся только нейтронные звезды и облака замагниченной плазмы вокруг них. Весьма вероятно возникновение двойных и кратных систем нейтронных звезд, подобных атомным ядрам. Наиболее интенсивно такие процессы идут в центральных областях галактик, так что наблюдаемые нами процессы в активных галактиках и квазарах с точки зрения энергетики вполне объясняются присутствием там достаточного количества нейтронных звезд.
Долговременная стабильность нейтронной звезды определяется тем, что силы гравитации уже не могут сжать ее вещество, являющееся нейтронной жидкостью и описываемое уравнениями состояния ядерного вещества. Известно, что между нуклонами действуют мощные силы сильного взаимодействия, во много раз превышающие электромагнитные или еще более слабые обычные гравитационные силы. Зададимся теперь следующими вопросами: Что удерживает тот же протон от распада при его многочисленных взаимодействиях с окружающей средой?
От чего зависит его целостность и огромная временная стабильность? Очевидно, что должна быть сила, притягивающая все его части друг к другу, которую можно назвать ядерной гравитацией. Принимая данное положение, можно вычислить постоянную ядерной гравитации, приравняв энергию покоя протона по Эйнштейну к его гравитационной энергии связи. Более того, точно такое же значение постоянной ядерной гравитации можно получить, если приравнять электромагнитную и гравитационную силы, действующие между протоном и электроном в атоме водорода. Отсюда следует, что если ядерная гравитация существует, то протон является несколько более плотной и замагниченной нейтронной звездой в миниатюре.
Проводя дальнейшие аналогии, находим подобие между мюоном (это один из лептонов) и звездой – белым карликом соответствующей массы, а также между адронами и нейтронными звездами разных масс в различных состояниях. Поскольку массы и энергии элементарных частиц имеют достаточно определенные значения, то и для вырожденных звездных объектов можно ожидать какие-то характерные значения масс и энергий. И действительно, оценки масс нейтронных звезд – аналогов протонов показывают, что их массы приблизительно одинаковы, достигая величины порядка 1,4 М, где М – масса Солнца.
До сих пор мы рассматривали соотношения подобия между отдельными величинами, физическими переменными или параметрами, такими как размеры и массы тел, энергии, времена протекания процессов, распространенность в природе, характерные скорости движения. Но имеется и другая сторона принципа подобия, а именно соотношения между уравнениями состояния и движения объектов различных групп и видов. Особенно это важно учитывать и использовать для различного рода взаимодополняющих объектов или форм движения материи (принцип дополнительности, по которому в каждом явлении имеются две противоположности; познание явления в целом требует выяснения законов движения каждой противоположности; данные законы также являются взаимодополнительными друг к другу). Примеры взаимодополняющих противоположностей: вещество и антивещество; корпускулы и волны; частицы и поля вокруг них, основные объекты и их спутники (большие и карликовые галактики, звезды и планеты, атомные ядра и электроны).
Принцип дополнительности можно использовать для того, чтобы полностью перевернуть картину эволюции Метагалактики. В начале статьи уже говорилось о том, что стандартная теория рождения Вселенной из сингулярности с последующим расширением вещества сталкивается с рядом трудностей. Однако практически все они исчезают, если мы будем считать, что Метагалактика как и звезды и галактики образовалась не путем расширения, а путем сжатия вещества или гравитационного скучивания. Правда при этом мы должны дать иное истолкование красному смещению спектров далеких галактик, реликтовому излучению, содержанию гелия и тяжелых металлов в звездах, то есть тем фактам, которые обычно истолковываются в пользу модели Большого взрыва и расширяющейся Вселенной. Как правило в астрономии красное смещение спектров объясняется эффектом Допплера, который проявляется например в том, что если источник звука удаляется от наблюдателя, то частота слышимого им звука уменьшается. Но возможен и иной подход. В самом деле, кванты света или фотоны, проходя неимоверно длинный путь в космическом пространстве, просто обязаны терять свою энергию. Это следует из второго закона термодинамики, по которому процесс преобразования упорядоченного движения тела как целого в неупорядоченное движение частиц самого тела и окружающей среды является необратимым. Тогда потеря энергии фотонами как раз и проявляется в сдвиге их частоты в длинноволновую область, то есть в красном смещении.
Теперь о реликтовом излучении. Делая мысль о гравитационном скучивании вещества общей для всех объектов, приходим к тому, что не только звезды и галактики образовались из газово-пылевых облаков с малой начальной плотностью (это факт подтверждается наблюдательной астрономией), но и Метагалактика, и более того, сами элементарные частицы также должны были возникнуть из отнюдь не пустого физического вакуума, окружающего их. Хорошо известно, что любое скучивание вещества в более плотные объекты сопровождается выделением энергии связи. Поскольку наблюдаемое реликтовое излучение практически изотропно, то есть идет на Землю с одинаковой интенсивностью со всех сторон, соответствуя черному телу с температурой 2,7 Кельвина, то можно предположить, что это излучение появилось тогда, когда выделялась энергия связи при образовании нуклонов в Метагалактике.
Зная плотность энергии реликтового излучения и его температуру, энергию связи нуклонов можно связать с их концентрацией в пространстве и затем оценить плотность вещества Метагалактики, которая оказывается близкой к наблюдаемой величине. Что касается содержания гелия и тяжелых металлов на Солнце и в звездах Галактики, то достаточно убедительным выглядит предположение о том, что оно получилось не в результате Большого взрыва, а как следствие взрывов первичных сверхновых звезд Галактики.
Подобие противоположностей и принцип дополнительности проявляются также в корпускулярно-волновом дуализме. По де Бройлю каждую движущуюся частицу сопровождает так называемая материальная волна, длина волны которой зависит от величины механического импульса частицы и может быть измерена экспериментально. Несколько усложняет ситуацию принцип неопределенностей Гейзенберга, по которому чем точнее известна скорость частицы, тем менее точно мы знаем ее положение в пространстве. Что же это такое – материальная волна? Согласно статистической интерпретации, это волна вероятности нахождения частицы в той или иной точке пространства. Но возможно и другое объяснение результатов экспериментов. Попробуем рассматривать волновые колебания внутри самой частицы, а не за ее пределами. Нетрудно представить себе пульсации частицы, вызванные ее взаимодействием с другими объектами. После таких многократных взаимодействий энергия внутренних колебаний частицы может возрасти до своего предельного значения – и тогда согласно самым строгим расчетам в эксперименте как раз и проявится наблюдаемая длина волны де Бройля.
О подобии и взаимодополнительности уравнений электричества и магнетизма было написано множество книг, в конце концов уравнения Максвелла утвердили понятие о едином объекте – электромагнитном поле. По теории Лоренца любые магнитные поля вызываются направленным движением зарядов или электрическим током. Но что можно сказать о самом электрическом заряде элементарных частиц, как вообще понять его существование? И вот оказывается, что электрический заряд частицы можно оценить, зная лишь угловую скорость ее собственного вращения и величину магнитного поля на ее поверхности. То есть для того, чтобы частица казалась нам заряженной, она должна иметь и механический и магнитный моменты. У нас получается полный замкнутый круг – ток или движение зарядов создает магнитное поле, а движение магнитного поля создает не только индукционный ток, но и заряды частиц (или в более общем виде – заряды порождают электромагнитное поле вокруг себя, а наличие электромагнитного поля во внутренних частях частиц порождает общий видимый извне заряд этих частиц).