Логика относится к числу древнейших наук, первые учения которой о формах и способах рассуждений возникли еще в цивилизациях Древнего Востока (Китай, Индия). В западную культуру принципы и методы логики вошли главным образом благодаря усилиям античных греков.
Логика – наука об общезначимых формах и средствах мысли, необходимых для рационального познания в любой области знания. К общезначимым формам мысли относятся понятия, суждения, умозаключения, а к общезначимым средствам мысли – определения, правила (принципы) образования понятий, суждений и умозаключений, правила перехода от одних суждений или умозаключений к другим как следствиям из первых ( правила рассуждений), законы мысли, оправдывающие такие правила, правила связи законов мысли и умозаключений в системы, способы формализации таких систем и т.п.
Логику можно определить как науку о рациональных методах рассуждений, которые охватывают как анализ правил дедукции (вывода заключений из посылок), так и исследование степени подтверждения вероятностных или правдоподобных заключений (гипотез, обобщений, предположений и т.д.).
Традиционная логика сформировалась на основе логического учения Аристотеля. Затем она дополнилась методами индуктивной логики. Именно эта логика в течение долгого времени преподавалась в школах и университетах под именем формальной логики.
Возникновение математической логики коренным образом изменило отношение между дедуктивной и недедуктивной логиками, которое существовало в традиционной логике. Это изменение было сделано в пользу дедукции. Благодаря символизации и применению математических методов сама дедуктивная логика приобрела строго формальный характер.
Цель данного реферата — описать основные тенденции развития современной математической логики, занимающейся вопросами формализации естественного языка, выразить их основное содержание.
В «Философском энциклопедическом словаре» язык определяется как «система знаков, служащая средством человеческого общения, мышления и выражения». Указывается, что «с помощью языка осуществляется познание мира, в языке объективируется самосознание личности». Язык является средством хранения и передачи информации, а также управления человеческим поведением.
Философские проблемы языка и логики — динамично развивающееся научное направление. Особый интерес к нему сейчас связан не только с постоянным стремлением прояснить общие механизмы и закономерности мышления, но и понять то, как же человек способен перерабатывать, трансформировать и преобразовывать огромные массивы знаний в крайне ограниченные промежутки времени. Отмеченные вопросы имеют не только чисто теоретический интерес — от успешности их решения во многом зависит прогресс в создании новейших вычислительных систем, эффективного программного обеспечения. Все это, несомненно, усиливает практическую значимость и актуальность исследований в области логики и философии языка — области, которая до последнего времени считалась чисто умозрительным.
Логический анализ рассуждений в естественном языке
Исчисление предикатов дает возможность проводить логический анализ несравненно большего количества рассуждений, выраженных на естественном языке, чем исчисление высказываний. С помощью нового исчисления становится возможным представить символические количественные характеристики суждений. Именно для этого вводятся кванторы общности и существования, выражающие универсальные (общие) суждения и частные суждения. Но самое главное преимущество исчисления предикатов перед исчислением высказываний состоит в том, что оно дает возможность символически представить внутреннюю логическую структуру суждения. Такая структура выражается либо с помощью субъектно-предикатного отношения предмета (субъекта) и его свойства или признака (предиката), либо n-местного отношения между различными предметами.
Повседневные и многие научные рассуждения обычно ведутся на естественном языке. Но такой язык развивался в интересах легкости общения, обмена мыслями в ущерб точности и ясности. Логические исчисления строятся для того, чтобы обеспечить необходимую точность нашим рассуждениям, вскрывать возникающие при этом ошибки и исправлять их. В простейших случаях такой анализ можно провести с помощью исчислений высказываний, в котором мы отвлекаемся от логической структуры суждений и рассматриваем их как нечто единое целое, как далее неразложимые атомы рассуждений. Но средств этого исчисления оказывается явно недостаточно, когда приходится анализировать многие наиболее распространенные рассуждения не только в науке, но и в повседневном мышлении. Силлогистика Аристотеля охватывает неизмеримо больший класс рассуждений, но она оставляет вне рассмотрения рассуждения, в которых фигурируют различные типы отношений. Точный анализ именно таких отношений играет существенную роль в научном познании, в особенности, в математике и ее приложениях, в точном естествознании. Поэтому возникновение логики отношений значительно раздвинуло границы применимости логического анализа. С другой стороны, применение символического языка и точных математических методов в новой символической логике, обогащенной логикой отношений, в огромной степени повысило эффективность, строгость и точность такого анализа.
Перевод рассуждений с естественного языка на язык исчисления высказываний наталкивается на серьезные трудности потому, что сильно искажает реальный процесс рассуждений, в котором интересуются не только различными связями суждений друг с другом, но и структурой самих суждений. Исчисление предикатов дает возможность более адекватно отобразить рассуждения, ведущиеся на естественном языке.
Для исчисления предикатов, прежде всего, устанавливается универсум рассуждения или предметная область объектов, о которых идет речь. Заранее устанавливать, из каких именно объектов состоит универсум рассуждения, не требуется. Достаточно допустить, что такой универсум существует. Далее следует выбрать предикаты (или пропозициональные функции), с помощью которых формулируются логические отношения между переменными. Каждый из выбранных предикатов становится высказыванием, когда все его переменные принимают какое-либо значение из универсума рассуждений, т.е. когда переменные становятся объектами (элементами) универсума рассуждений. Полученное высказывание будет либо истинным, либо ложным, но не тем и другим одновременно. Затем выбирается соответствующая символика для окончательного перевода естественного рассуждения на язык исчисления предикатов. При этом приходится делать определенные упрощения, так как логика ставит своей целью исследование связи мыслей в рассуждении, выводов из одних суждений к другим.
Анализ языка и развитие логической теории
Логика и лингвистика — две области знаний, имеющие общие корни и тесные взаимопереплетения в истории своего развития. Логика всегда ставила своей основной задачей обозреть и классифицировать разнообразные способы рассуждений, формы выводов, которыми человек пользуется в науке и в жизни. Хотя традиционная логика имела дело с законами мысли и правилами их связи, выражались они средставми языка, поскольку непосредственной реальностью мысли является язык.
Для логики важны общие логические закономерности мышления, реализуемые в тех или иных языковых конструкциях. Логические компоненты — важный фактор образования высказываний и организации текста.
Г. Фреге первым предложил реконструкцию логического вывода на основе искусственного языка (исчисления), обеспечивающего полное выявление всех элементарных шагов рассуждения. В символику логического языка были введены операции квантификации. Аксиоматическое построение логики предикатов в виде исчисления предикатов включают аксиомы и правила вывода, позволяющие преобразовывать кванторные формулы и обосновывать логический вывод. Тем самым объект исследования логики окончательно переместился от законов мысли и правил их связи к знакам, искусственным формализованным языкам.
В логике правильным способом рассуждения является такой, который никогда не приводит от истинных предпосылок к ложным заключениям. Это требование вводит в соприкосновение логику как теорию вывода с семантикой. Вывод считается корректным тогда и только тогда, когда условия истинности его предпосылок составляют подмножество условий истинности его заключений.
Однако стандартный семантический подход обоснования вывода в контекстах, выходящих за рамки классических математических теорий, сталкивается с существенными трудностями. В качестве традиционных примеров рассуждений, для которых средств стандартной семантики недостаточно, можно привести контексты, содержащие пропозициональные установки («знает, что…», «полагает, что…») и логические модальности («необходимо», «возможно»).
Отсюда делается вывод о том, что необходима ревизия семантического способа обоснования логического вывода с целью расширения сферы его применения.
В рамках общего подхода к семантическому анализу выражений естественного языка в настоящее время базисной является теоретико-модельная семантика. Возникновение математической теории моделей было связано с появлением в современной логике двух равноправных подходов — синтаксического (теоретико-доказательственного) и семантического (теоретико-модельного). Особенность последнего состоит в том, что он задает интерпретацию формального логического языка относительно столь же формальных сущностей, имеющих алгебраическую природу и называемых моделями данного языка. Возникновение и развитие этого второго подхода оказало ни с чем не сравнимое влияние на все дальнейшее развитие логики.