Смекни!
smekni.com

Логика неопределенности и неопределенности во времени (стр. 3 из 7)

Два последних свойства (а также некоторые другие особенности н-семантики) нежелательны. Они излишне усложняют формальные семантические характеристики неопределенности, тогда как с содержательных позиций все относительно просто: есть определенные высказывания, истинные во всех мирах или ложные во всех мирах, и есть неопределенные высказывания, истинные в одних мирах и ложные в других. Законы классической логики истинны во всех возможных мирах, а противоречия ложны во всех мирах. Поэтому, в частности, А U O А – определенное высказывание (и при том истинное), и O (А U O А) – также определенное высказывание (но ложное).

Стало быть, высказывания А U O А и O (А U O А) остаются определенными независимо от того, является ли исходное высказывание А определенным или неопределенным. Эта, восходящая к Аристотелю, позиция для нас принципиальна. Но именно она заставляет говорить о простоте семантической идеи неопределенности в относительном смысле. Ведь при таком подходе истинностное значение сложного выражения не является, в общем случае, функцией от истинностных значений его частей. И тут ничего не поделаешь. Что приписать дизъюнкции А U В, если ¦А¦ = 1/0 и ¦В¦ = 1/0? Максимум? – Тогда ¦А U В¦ = 1/0. Но если В есть O А? – Тогда ¦А U В¦ = 1. Аналогичные трудности возникают в отношении конъюнкции, импликации и эквивалентности – для них тоже не существует адекватных трехзначных таблиц. Например, рассмотрим высказывание А « В. Пусть ¦А¦ = 1/0 и ¦В¦ = 1/0. Но не спешите приписывать ¦А « В¦ = 1. Если В есть O А, то ¦А « O А¦ = 0, поскольку А « O А противоречиво и, значит, А « O А ложно во всех мирах. Если же истинностное значение А совпадает с истинностным значением В в мире a , но не совпадает в мире b , то А « В истинно в a и ложно в b . Отсюда ¦А « В¦ = 1/0. И т. п. Однако это так только для бинарных логических связок. Унарные логические связки “ O ” и “н” составляют исключение, поскольку определяются следующей таблицей.

А O А нА
1 0 0
1/0 1/0 1
0 1 0

Действительно, если высказывание А истинно (ложно) во всех мирах, то его отрицание будет ложным (истинным) также во всех мирах. В любом случае А и O А определенны, поэтому приписывание им неопределенности ложно. Если же А истинно в мире a и ложно в мире b , т. е. если ¦А¦ = 1/0, то, конечно, высказывание “А неопределенно”, т. е. высказывание нА, будет истинным. После того как высказывание нА получило истинностную оценку, оказывается, что оно стало либо ложным, либо истинным, т. е. превратилось в определенное высказывание. Поэтому, в соответствии с таблицей, любое высказывание вида ннА окажется ложным, так что формула O ннА является первым примером специфического логического закона u = O ннА, связанного с оператором неопределенности “н”.

В целом можно сказать, что вместо принципа бивалентности нами принимается семантический принцип тривалентности , согласно которому любое высказывание либо истинно, либо ложно, либо неопределенно. Четвертого не дано. Однако принцип тривалентности здесь не ведет к отбрасыванию закона исключенного третьего (А U O А) и принятию вместо него закона исключенного четвертого в форме (А U O А U нА). Разумеется, последняя формула является законом, т. е. u = (А U O А U нА), но, тем не менее, законом остается и первая формула, т. е. u = (А U O А). Зато формулы (А U нА) и ( O А U нА) законами не являются. Тут отсутствует какая-либо непоследовательность в рассуждениях. Все дело в том, как добываются истинностные значения. А они получаются в зависимости от положения дел в возможных мирах. При нашем подходе возможные миры существуют не наряду с действительным миром, а в совокупности его составляют. Действительный мир распадается на возможные миры потому, что ему объективно присуща неопределенность. Точнее говоря, возможные миры в нашем смысле совпадают друг с другом в определенной части реального мира, и различаются лишь в отношении его неопределенной части. Она потому и неопределенна, что в реальности ее нельзя свести к чему-то одному. Законы классической логики описывают определенную часть реальности, поэтому они сохраняются в любом возможном мире. Что же касается неопределенностей, то у них свои законы, которые должны ужиться с законами классики.

Иными словами, логика неопределенности должна быть консервативным расширением логики классической. Лишь в этом случае есть надежда, что она будет не просто еще одним добавлением к многочисленному семейству абстрактных неклассических логик, представляющих только теоретический интерес, но на самом деле будет логикой, т. е. основой для реальных рассуждений. Ведь, как известно, чаще всего даже авторы неклассических систем в действительности не рассуждают в соответствии с построенными ими же исчислениями и семантиками. Бывает забавно наблюдать, как поборник какой-нибудь неклассической логики, основанной на отбрасывании некоторых законов классики, и таким образом, не являющейся ее расширением, доказывает метатеоремы для своей “логики”, пользуясь исключительно логикой классической.

Приведенные рассуждения подводят к очень важному для дальнейшего заключению. Во всех ситуациях определенность имела место тогда и только тогда, когда какое-то положение дел А было одинаковым во всех возможных мирах. Для возникновения неопределенности в отношении А требовалось наличие двух миров a и b таких, что А имело место в a и не имело места в b или наоборот. Что делается в других мирах, отличных от a и b , – уже не существенно в том смысле, что ситуация в них никак не способна повлиять на неопределенность А . Это наблюдение приводит к выводу, что с логической точки зрения для описания свойств неопределенности достаточно двух возможных миров . Третий, четвертый и последующие миры могут нести дополнительную информацию фактического характера, но ничего не добавят к логическим характеристикам определенности или неопределенности, подобно тому, как в классической логике любые дескриптивные особенности высказываний элиминируются стягиванием их всех к двум полюсам – истина и ложь. В отличие от классики, теперь в целом перед нами не два, а три варианта: А выполнено во всех мирах, А не выполнено во всех мирах, и А выполнено в одном мире и не выполнено в другом. Но в последнем случае достаточно опять-таки двух вариантов или двух миров для возникновения неопределенности в отношении А . Это позволяет свести рассуждения о неопределенности к двум возможным мирам, что, как можно надеяться, значительно упростит логическую теорию неопределенности без потери каких бы то ни было существенных характеристик исследуемого феномена.

Как уже говорилось, идея неопределенности была нами развита на основе неклассической логики. Тривиально ясно, что логика, содержащая третье истинностное значение и новый логический оператор “н”, не может быть классической. Однако нельзя ли как-нибудь приблизить неклассическую логику неопределенности к классике таким образом, чтобы избавить ее хотя бы от части нежелательных свойств, о которых упоминалось выше? Мы предлагаем весьма радикальный вариант решения поставленной проблемы. Его суть состоит в предложении развивать логику неопределенности как бы внутри классической логики.

Основная идея следующая. Каждый согласится, что бывает так, что Р( c ), но O Q ( c ), т. е. индивид с обладает свойством Р, но не обладает свойством Q . При этом все полностью определенно. Для возникновения неопределенности в отношении Р и с , надо, чтобы в некотором мире a было Р( c ), а в мире b – O Р( c ). Тогда можно утверждать, что нР( с ). Однако введение этих миров сделает семантику неклассической. А что, если в качестве O Р( c ) использовать O Q ( c )? Обоснованно возразят, что Р и Q являются разными предикатами. Как же можно в этих условиях утверждать нР( с )? Но что означает различие в предикатах – только ли различие в написании? Нет, не только. Главным является как раз не это, а то, как определяются предикаты. При аксиоматическом подходе, например, мы можем принять некоторые утверждения про Р и Q в качестве аксиом, приняв, допустим, что " хР(х) и O" х Q (х). Тут различие между Р и Q действительно очевидно и речь в самом деле идет о разных свойствах. Однако предположим, что Р и Q определяются одинаково , т. е. всякая аксиома для Р превращается в аксиому для Q посредством замены Р на Q и, наоборот, всякая аксиома для Q превращается в аксиому для P посредством замены Q на P . Какие теперь есть основания утверждать, что Р и Q различны? Основания эти вытекают из того, что одни и те же аксиомы можно иногда интерпретировать по-разному. Если принимаются высказывания " хР(х) и " х Q (х), то предикаты Р и Q в рамках классики совпадут в любом универсуме при любой интерпретации. Но если в качестве аксиом принимаются формулы $ хР(х) и $ х Q (х), то интерпретации данных предикатов могут быть различны. Однако додумаем высказанную мысль до конца. При совпадении аксиом для Р и Q мы имеем право в любом случае вести речь если и не о совпадении, то, по крайней мере, о сходстве Р и Q . Здесь больше оснований говорить о сходстве, чем в той ситуации, когда интерпретации одного и того же предиката Р в мирах a и b никак не связаны. И именно опираясь на это сходство, мы получаем полное право при наличии Р( c ) и O Q ( c ) не только утверждать, что нР( с ), но и (поскольку отношение сходства симметрично) утверждать н Q ( c ).

Обсуждаемое сходство можно подкрепить психологически, сделав похожими начертания сходных предикатов. Удобнее вместо Q использовать, допустим, Р*. Важно подчеркнуть, что суть идеи сходства не в этом. Мы называем n - местные атомарные предикаты Р(х 1 , ..., x n ) и Q (х 1 , ..., x n ) сходными в теории Т, если любая аксиома Т, содержащая эти предикаты или один из них, остается аксиомой данной теории Т после одновременной замены каждого вхождения Р(х 1 , ..., x n ) на Q (х 1 , ..., x n ) и каждого вхождения Q (х 1 , ..., x n ) на Р(х 1 , ..., x n ). Аналогичным образом определяется сходство в теории Т функциональных символов.