Номическая интерпретация вероятности заслуживает внимания потому, что она отказывается целиком от истолкования этого понятия в терминах субъективной веры, в том числе и рационализированной с помощью аксиом исчисления вероятностей. Вот почему автор называет свою концепцию объективной. Во-вторых, вероятность в ней отличается от относительной частоты как эмпирического понятия. В то время как относительная частота имеет дело с реальными частотами реальных событий, вероятность представляет собой суждение сослагательного или контрфактического характера. Грубо говоря, она ориентирована не на определение реальной частоты массовых случайных событий, а представляет собой суждение такого рода: что бы случилось с относительной частотой, если бы количество независимых испытаний неограниченно увеличивалось, хотя фактически мы знаем, что такое неограниченное повторение практически осуществить невозможно. Вопреки этому факту мы допускаем возможность такого неограниченного процесса и из этого делаем весьма важные выводы. Точно так же мы поступаем, например, в теоретической механике, когда вводим понятие инерции как свойства тела находиться в покое или равномерно прямолинейном движении при отсутствии воздействия внешних сил, хотя фактически исключить такое влияние сил невозможно. В-третьих, вводя разные категории вероятности, которые автор называет неопределенными и определенными, мы получаем возможность более адекватно характеризовать вероятности частных событий, что имеет первостепенное значение для приложений.
Теория номической вероятности, по мнению автора, лежит в основе вероятностных рассуждений, которые содержат в своем составе три компонента: прежде всего она должна иметь правила, предписывающие как определять численные значения номических вероятностей на основе наблюдаемых относительных частот. Во-вторых, она должна содержать ”вычислительные” принципы, позволяющие нам выводить значения некоторых номических вероятностей из других. В-третьих, в ней должны присутствовать также принципы, позволяющие использовать номические вероятности для вывода заключений другого характера. (9, p. 265).
Эпистемологический подход к вероятности и правдоподобным рассуждениям
При обсуждении вероятностных высказываний и основанных на них правдоподобных рассуждений возникает ряд проблем теоретико-познавательного характера. Главная из них состоит в анализе взаимосвязи между заключением и посылками правдоподобного рассуждения. Поскольку посылки (эмпирические данные и релевантные к заключению знания вообще) в определенной степени подтверждают заключение и тем самым делают его вероятным, постольку можно говорить об обосновании вероятности вообще и правдоподобности опирающихся на нее правдоподобных рассуждений.
С эпистемологической точки зрения различают разные уровни рационального обоснования. Долгое время рациональным считались лишь дедуктивные рассуждения, в которых заключение следует из посылок с логической необходимостью по правилам вывода. Поэтому такое заключение будет считаться достоверно истинным, если истинны его посылки. В связи с этим индуктивные обобщения и умозаключения по аналогии рассматривались как чисто проблематические и поэтому нередко исключались из логики и рациональных рассуждений в целом.
Однако потребности анализа бурно развивающегося опытного знания побудили ученых заняться исследованием таких методов рассуждения, которые хотя и не гарантируют достижение истины в каждом случае, но в целом обеспечивают эвристический поиск истины и потому являются рациональными. Но эта рациональность имеет более широкий характер по сравнению с узкой, дедуктивной рациональностью. Конечно, легче всего заявить, что научный поиск происходит путем догадок и опровержений, как заявляли логические позитивисты и критические рационалисты, и тем самым, по сути дела, лишить его рационального характера. Но против этого решительно выступили сами ученые, которые убедительно доказывали, что процесс научного исследования вовсе не сводится только к выводу следствий из догадок, предположений и гипотез и проверки их с помощью опыта и эксперимента.
В любой эмпирической или фактуальной науке делаются многочисленные заключения на основании имеющихся фактов, результатов наблюдений и экспериментов. Хотя эти заключения являются только вероятными, тем не менее они отнюдь не произвольны, а обосновываются всей совокупностью не только релевантных эмпирических данных, но и наличных знаний. В сущности, различные интерпретации понятия вероятности и призваны дать обоснование различным видам правдоподобных рассуждений. Непосредственно такую цель ставят перед собой интерпретации, рассматривающие вероятность как особый вид логического отношения, в котором одно высказывание или множество высказываний, составляющих посылки рассуждения, подтверждают или обосновывают его заключение. С формальной точки зрения отношение между посылками и заключением такого рассуждения можно рассматривать как условную вероятность, например, гипотезы H по отношению к ее свидетельству E и выразить формулой P(H/E). Что касается определения степени вероятности, то разные школы подходят к этому по-разному. Некоторые ученые считают, что она должна быть установлена эмпирически, другие склоняются к интуитивной оценке, третьи обращаются к рациональной вере, наконец, в школе Карнапа и его последователей обращаются к чисто семантическому анализу отношения между высказываниями. Как бы, однако, не подходили логики к анализу этого отношения, с эпистемологической точки зрения они решают проблему обоснования правдоподобного знания. Это особенно наглядно выступает в особой эпистемологической интерпретации Г.Кайберга (Кайберг Г. Вероятность и индуктивная логика. М.: Прогресс, 1978). “В эпистемологической интерпретации, – пишет он, – вероятность выступает в качестве особого рода логического отношения между свидетельством и заключением, но в то же время это отношение отражает известные нам частоты, в силу чего эпистемологическая интерпретация противостоит как условно-логической интерпретации, так и – будучи неэмпирической – частотным или диспозиционным интерпретациям” (10, с. 114). Такая попытка объединения противостоящих друг другу интерпретаций ясно показывает стремление к обоснованию вероятностных высказываний и рассуждений с помощью всей суммы доступного исследователю знания.
Эпистемологический подход не ограничивается, однако, анализом и обоснованием вероятностного отношения в правдоподобных рассуждениях. Ведь эти рассуждения, наряду с тем, что они характеризуются таким отношением между посылками и заключением, обладают своими специфическими особенностями. Так, например, если в наиболее типичных формах индукции речь идет о переносе истинностного значения посылок на обобщение, то в умозаключениях по аналогии имеют дело с переносом свойств и отношений с известного предмета или явления на другие. В наиболее распространенных статистических выводах особые требования предъявляются к выборке, на основе которой делается умозаключение о генеральной совокупности. Все эти методологические и эпистемологические соображения никак не учитываются при чисто вероятностном подходе. То же самое можно сказать о теории принятия решений, в которой наряду с оценкой вероятности возможных действий или выбора альтернатив учитывается также их полезность.
Резюмируя изложенное, можно сказать, что правдоподобные рассуждения существенно отличаются от достоверных дедуктивных тем, что вероятностное отношение, связывающее в них посылки с заключением, значительно труднее поддается формализации. Сама же степень вероятности всегда зависит от наличных, известных данных, подтверждающих заключение. Поэтому в отличие от дедуктивного заключения оно не может иметь окончательного, самостоятельного и достоверного характера.
Списоклитературы
Carnap R. The logical of Probability. 2 ed. Chicago, 1962.
Mises R. Probability, Statistics and Thruth. N.Y., 1957.
Reichenbach H. The theory of probability. Los Angeles, 1949.
Крамер Г. Математические методы статистики. М., 1948.
Колмогоров А.Н. Основные понятия теории вероятностей. 2 изд. М.: Наука, 1950.
Keynes D.M. Treatise on probability. L., 1952.
Jeffreys H. The theory of probability. Oxford, 1939.
Jeffrey R., Carnap R. (ed.) Studies in Inductive lodic and probability. Vol. 1. Berkeley, 1971.
Synthese. Vol. 90, n 2. Dordrecht , 1992.
КайбергГ. Вероятностьииндуктивнаялогика. М.: Прогресс, 1978.