А3. Аксиома дополнения: C(H/E) + C(H/-E) = 1.
А4. Общий мультипликационный принцип: если E C H возможно, то C(H C H’/E) = C(H/E) ? C(H’/E C H).
Как нетрудно заметить, четыре перечисленные аксиомы аналогичны обычным аксиомам исчисления вероятностей, но отличаются от них просто интерпретацией вероятности в терминах рациональной степени подтверждения. К сожалению, трудность заключается не столько в различных трактовках самого понятия рациональности, сколько в адекватности применения принципов построенной таким способом индуктивной логики для оценки и анализа научных обобщений и законов. Разумеется, простые эмпирические обобщения о свойствах явлений сравнительно нетрудно истолковать с помощью карнаповской логики, но универсальные законы, хорошо подтвержденные опытами и наблюдениями, оказываются в прежней системе индуктивной логики Карнапа имеющими нулевую вероятность, хотя Я.Хинтикка, кажется, попытался преодолеть эту трудность. Безотносительно к этому в основе идейной установки карнаповской школы в неявной форме ощущается тенденция если не свести индуктивную логику к дедуктивной, то максимально сблизить методы их анализа на семантическом уровне. В конце концов процесс индуктивного как и любого правдоподобного рассуждения не ограничивается простым семантическим анализом вероятностного отношения между гипотезой (индуктивным заключением) и ее свидетельствами (посылками), хотя бы потому, что степень подтверждения гипотезы меняется в зависимости от изменения свидетельств. Поэтому самая главная трудность при построении адекватной системы индуктивной логики состоит даже не столько в том, чтобы научиться строить все более мощные формализованные языки, сколько в возможности отобразить формальными средствами процесс перехода.
Другие подходы к интерпретации вероятности
Наряду с рассмотренными интерпретациями вероятности в последние годы все большее признание завоевывает субъективная концепция, с которой мы уже встречались при изложении других концепций. В скрытом виде она фигурирует уже в объективной интерпретации, когда приходится оценивать вероятность отдельного события, не обладающего частотой. Более явно она выступает при логической интерпретации при установлении степени подтверждения и связанных с ней вероятностных мер. Благодаря работам Л.Севиджа, который стал рассматривать субъективные вероятности как степени предпочтения, эта интерпретация нашла признание и среди части статистиков, хотя большинство ее представителей по-прежнему придерживается частотной интерпретации.
Там, где приходится принимать решение в ситуации неопределенности или делать выбор между альтернативными способами действий, всегда возникает вопрос о вероятностной оценке. Очевидно, что для такой оценки нельзя воспользоваться частной интерпретацией, по крайней мере непосредственно, хотя бы потому, что такие измерения можно провести лишь задним числом. Вот почему приходится обращаться к оценке веры субъекта относительно отдельного случайного события или суждения. Именно поэтому такая интерпретация обычно называется субъективной, вследствие чего она подвергалась критике в нашей философской и даже математической литературе.
На первый взгляд кажется, что обращение к таким понятиям, как вера, уверенность, доверие и их синонимам, придает нашим рассуждениям чисто субъективный, психологический характер и вносит в них произвол, ничем недетерминированный характер. В самом деле, люди по-разному оценивают свои степени веры в появление какого-либо события, в правдоподобность определенной гипотезы или предположения. Даже вера отдельного человека может меняться с течением времени. Обычно именно это обстоятельство служит доводом против субъективной интерпретации вероятности, отрицания за ней каких-либо рациональных моментов.
На самом деле в условиях неопределенности вряд ли можно полагаться на какие-либо иные средства для оценки вероятности возможного действия, выбора альтернативы и принимаемого решения. К тому же при практическом применении значения субъективных вероятностей во многом подвергаются рационализации, что дает возможность выбора более приемлемых и правдоподобных решений. По сути дела, другие интерпретации вероятности нестатистического характера строятся на усилении требований рациональности к фактической вере субъектов.
Реальная, фактическая вера субъекта в данный момент времени остается для нас неизвестной до тех пор, пока мы не найдем способа ее измерения с помощью некоторых процедур, выражающих внутреннее состояние веры в соответствующем внешнем ее выражении или проявлении. Давно признано, что лучшим проявлением веры, намерений и внутреннего мира человека являются его действия, поступки и решения. Поэтому еще в 20-х гг. английский логик и математик Ф.Рамзей предложил для оценки степеней субъективной вероятности величины ставок, которые делаются при заключении пари, спора или в азартной игре. Очевидно, что чем выше вера субъекта в появление некоторого события, тем больше его ставка. Но при этом следует избегать заведомо проигрышных пари. Например, если степень веры в наступление некоторого события оценивается как 4/5 и допускается ставка 4 против 1 в заключаемом пари, то нельзя заключать пари по поводу ненаступления этого события со ставкой 2 против 3, соответствующей субъективной вере 2/5. Легко подсчитать, что независимо от того, наступит или не наступит ожидаемое событие, пари в итоге оказывается проигрышным. Если наступит событие, то выигрыш составит 1, а проигрыш 2. Если событие не наступит, то проигрыш составит 4, а выигрыш 3. В чем здесь причина? Оказывается, что величины субъективных вероятностей при этом не были согласованы между собой и противоречили аксиоме исчисления вероятностей, согласно которой сумма вероятностей не должна превышать 1.
Учитывая это, сторонники субъективной интерпретации хотя и допускают любые значения вероятностей, но требуют, чтобы степени субъективных вер согласовывались с аксиомами теории вероятностей. Иначе говоря, теория вероятностей для них выступает как средство рационализации степеней веры. Отсюда становится ясным, что эти степени веры нетождественны чисто психологическим степеням веры субъекта, поскольку они корректируются аксиомами исчисления вероятностей. Еще более жесткие требования предъявляются к ним сторонниками логической интерпретации, которые вводят понятие степени рациональной, или разумной, веры.
Таким образом, перед нами вырисовывается следующая модель поведения субъекта в ситуации неопределенности. В первом случае лицо, производящее действие или принимающее решение, опирается на свою субъективную веру, но степени их должны быть согласованы с аксиомами теории вероятностей, причем последняя не указывает ему, какие именно степени веры следует выбрать. Она просто постулирует, согласуются или нет его степени с теорией. Во втором случае субъект руководствуется рациональными степенями веры и поэтому он во всех ситуациях поступает всегда разумно. Такой рациональный идеал никогда не достижим фактически, тем не менее он может служить в качестве определенного стандарта, с которым может сравниваться поведение реального субъекта в реальных ситуациях неопределенности.
Нередко субъективную интерпретацию называют также бейесовской, поскольку при этом используется известная теорема Бейеса, устанавливающая зависимость между априорными и апостериорными вероятностями событий.
P(H/E) = P(H C E) ,
где P(H/E) обозначает апостериорную вероятность гипотезы H, т.е. вероятность ее после получения свидетельства E,P(E)-априорную вероятность свидетельства E, а P(H CE) – произведение вероятностей гипотезы и свидетельства. Известно, что первичные, априорные вероятности по мере получения все новых и новых эмпирических свидетельств не оказывают существенного влияния на вероятность гипотезы. Но наши первоначальные субъективные оценки вероятности способны корректироваться опытом. При таком подходе субъективные вероятности оказываются априорными допущениями, которые могут уточняться и исправляться в процессе получения новых эмпирических свидетельств.
Таким образом, субъективная вероятность оказывается в известной степени не только рационализированной, но и эмпирически проверяемой. Именно благодаря этому Л.Сэвидж использовал ее для статистических выводов. Однако вместо степеней субъективной веры он вводит степени предпочтения, согласующиеся с аксиомами исчисления вероятностей.
Новый подход к интерпретации вероятности, фигурирующей в статистических законах, предпринял в последнее время Д.Поллок (SYNTHES. Dordrecht, 1992. Vol. 90, n 2). Он называет свою интерпретацию номической, поскольку она тесно связана с истолкованием законов статистического характера. В отличие от этого нестатистические законы он называет номическими обобщениями. Символически такие обобщения могут быть выражены с помощью универсальной импликации: (x) (Ax ® Bx). Например, если x – физическое тело, A – свойство “быть нагретым”, а B – свойство “быть расширяемым”, то это выражает известный физический закон: если тело нагревается, то оно расширяется. В любом таком законе свойство, характеризующее антецедент импликации, должно быть связано с соответствующим свойством консеквента. Иначе говоря, любое x, обладающее свойством A, должно обладать свойством B.
По аналогии с этим можно сказать, что в номической вероятности лишь определенный процент B будут обладать свойством A, или символически: P(B/A) = r.
Поллок считает, что номическая интерпретация применима во всех тех случаях, когда частотная неприменима вовсе или кажется весьма искусственной. Например, по его мнению, располагая симметричной, нефальсифицированной монетой, мы можем без определения относительной частоты выпадения герба или решки сказать, что вероятность выпадения герба будет равна 1/2. Но такая аргументация не вносит ничего нового, ибо основывается на классической интерпретации, базирующейся на симметричности исходов равновозможных событий. Более основательной является ссылка на квантовомеханические вероятности, которые не определяются с помощью частот, а тем не менее они вычисляются.