Смекни!
smekni.com

Концепция "значение как употребление" и ее приложения (стр. 2 из 5)

Например, ученика учат писать последовательность, прибавляя 2 к последнему числу. Он многократно пишет последовательность четных чисел достаточно далеко и без ошибок, так что мы убеждены, что он овладел этой операцией. Но вот однажды ему случается продолжить ее до 1000, после чего он пишет: 1004, 1008, 1012 и т.д. Он не понимает нашего недовольства, потому что убежден, что делает именно то, чего от него хотят: прибавляет по двойке в первой тысяче, по две двойки во второй, по три – в третьей и т. д. В каком смысле мы можем сказать, что он следует правилу ошибочно, и в чем состоит правильное следование? Для того, чтобы делать подобные утверждения, мы, вероятно, должны быть убеждены, будто правило содержит в себе все бесконечное множество своих возможных применений, поэтому вопрос о правильном или ошибочном следовании решается сравнением реальных фактов следования правилу в тех или иных ситуациях с образцами следования, некоторым образом уже содержащимися в правиле. Можем ли мы отказаться от подобного допущения? Если да, то получается, что в ходе следования правилу каждый следующий шаг требует нового решения (§ 186). Но на каком основании мы можем тогда говорить, что тот или иной шаг является правильным или ошибочным? Здесь тоже нельзя отыскать таких значимых предпочтений, которые были бы отвлечены от конкретной ситуации.

Поэтому Витгенштейн вовсе не подвергает сомнению, что человек, давая кому-либо задание выписать последовательность четных чисел, имеет в виду, что после 1000 надо писать 1002. Витгенштейн отрицает только философское утверждение, что акт подразумевания предполагает мгновенное схватывание бесконечной последовательности (для чего не обнаруживается оснований), и философский тезис о том, что мое подразумевание того-то и того-то есть факт (моего сознания), наблюдение которого и оправдывает мое заявление, будто под знаком "+" я подразумеваю операцию с известными свойствами[7] .

Из примеров Витгенштейна следует, что у нас нет возможности окончательно удостовериться в том, что мы разделяем наше понимание некоторого выражения с кем-то еще, что в некотором будущем случае наши соответствующие использования выражения не будут различаться настолько радикально, что нам придется расценивать те значения, которые мы приписываем этому употреблению, как различные. А раз так, то мы неявно принимаем ту гипотезу, согласно которой ситуация употребления языковых выражений имеет форму ситуации существования соглашения об их употреблении. Предметом такого соглашения был бы способ, которым говорящие на языке понимают некоторое выражение как эквивалент некоторому открытому множеству утверждений об их поведении в фактических и гипотетических обстоятельствах. С этой точки зрения, разговор об определенном способе понимания выражения допустим только в том случае, если мы обладаем некоторыми средствами проверки того, как именно оно понимается. Если мы не имеем таких средств, то у нас нет оснований говорить о факте понимания выражения некоторым определенным способом. По мнению Витгештейна, у нас этих средств и, следственно, оснований действительно нет. Возможна другая точка зрения: отталкиваясь от этого соображения, Даммит строит свою теорию значения, подразумевающую возможность обнаружения таких средств. Однако и для отрицательной, и для утвердительной гипотезы важен не столько тот факт, что теория строится для открытого множества утверждений, сколько то, что такая теория предусматривает процедуры конструирования и деконструирования (допустим, прибавления единиц к конечному множеству). Именно знание (пусть неявное) процедуры (или о процедуре, о возможных способах бытийствования подобных процедур) необходимо нам для того, чтобы утром быть уверенными, что днем все будет так же.

Эта проблема может быть сформулирована как проблема стабильности языкового значения[8] (в определенном смысле наследующая проблемам индивидуального языка и следования правилу): какие факторы обеспечивают неизменность употребления языковых знаков в одном и том же значении? Откуда я могу знать, что в следующий раз, когда я произнесу слово "снег", мой собеседник будет знать, что я имею в виду мелкие кристаллы H 2 O ? В силу чего у нас есть основания полагать, что в следующий раз, когда мы произнесем то или иное слово, оно будет обозначать свой предмет тем же способом, что и в прошлый раз?

Возможны два наиболее общих ответа:

Так говорят все. И я, и другие люди много раз употребляли слово "снег" для обозначения мелких кристаллов H 2 O , и отсюда я делаю вывод, что так будет и дальше.

Слово "снег" означает в русском языке мелкие кристаллы H 2 O .

Второй ответ ассоциировался бы для Витгенштейна с "августинианскими" теориями значения, которые он отбрасывает вместе с репрезентационизмом "Трактата". (Точнее, он ассоциируется вообще с любыми абсолютистскими теориями значения, а не только идеационными.) Но и первый ответ не явился бы для Витгенштейна удовлетворительным, из чего и возникает обсуждение проблемы следования правилу. Поэтому для этого обсуждения оказывается не столь важно, конечное или бесконечное множество утверждений вовлечены в рассуждение —его целью является скорее уточнение понятия процедуры, роли процедур, содержания процедур, в отличие от статичных понятий.

Интерпретация описанной проблематики, предложенная Солом Крипке, утверждает логический приоритет обсуждения следования правилу над обсуждением аргумента частного языка. Эта постановка вопроса отличается от изложенной в § 201 "Философских исследований", где Витгенштейн формулирует проблему, ставшую фокусом дискуссий, следующим образом.

Наш парадокс был таким: ни один образ действий не мог бы определяться каким-то правилом, поскольку любой образ действий можно привести в соответствие. Ответом служило: если все можно привести в соответствие с данным правилом, то все может быть приведено и в противоречие с этим правилом. Поэтому тут не было бы ни соответствия, ни противоречия.

Мы здесь сталкиваемся с определенным непониманием, и это видно уже из того, что по ходу рассуждения выдвигались одна за другой разные интерпретации; словно любая из них удовлетворяла нас лишь на то время, пока в голову не приходила другая, сменявшая прежнюю. А это свидетельствует о том, что существует такое понимание правила, которое является не интерпретацией, а обнаруживается в том, что мы называем "следованием правилу" и "действием вопреки" правилу в реальных случаях применения.

По мнению Крипке, "невозможность частного языка появляется как заключение скептического решения [Витгенштейном] его собственного парадокса"[9] . Сам Витгенштейн немедленно отклоняет этот парадокс в следующем же абзаце: " Мы здесь сталкиваемся с определенным непониманием ..."; но Крипке использует парадокс для подробного скептического обсуждения проблемы значения.

(Крипке с самого начала оговаривается, что реконструируемая им скептическая фигура Витгенштейна не тождественна своему историческому источнику[10] . В свою очередь, теория Крипке породила собственную интерпретативную литературу, в которой обсуждение часто продолжается в значительной степени независимо от первоначального аргумента частного языка. Витгенштейн Крипке, реальный или вымышленный, стал самостоятельным философом — "Крипкенштейном", и для многих исследователей уже не важно, насколько верно (или насколько последовательно) воспроизведены в этой версии первоначальные идеи исторического Витгенштейна относительно частного языка — важнее возможные теоретические следствия[11] . В то же время другое возможное здесь соображение состоит в том, что хотя т еория Крипке интересна и плодотворна, тем не менее она основана на недискусионном принятии автором некоторых исходных допущений, против которых приводил доводы Витгенштейн[12] . )

Чтобы проиллюстрировать проблему, Крипке выбирает пример сложения. Каким образом мы понимаем, что именно нужно делать, чтобы сложить два числа?

Представим себе скептика, подвергающего сомнению все арифметические действия, и назовем его скептиком Крипке. Скептик Крипке складывал в своей жизни конечное число чисел и получал конечное число результатов сложения по правилу сложения; между тем это правило определяет его ответы на неопределенно большое число задач сложения, которых он никогда в прошлом не решал, и получение неопределенно большого числа новых сумм. Так, вычисляя "68 + 57", скептик Крипке (как и всякий разумный человек) обычно предполагает, что не просто необоснованно выдает какое-то число в ответ, а действует по правилу, которое предопределяет для данной задачи единственно верный ответ "125". Суть скептического аргумента может тогда быть выражена таким образом: как я могу знать, впервые вычисляя "68 + 57", что следую именно правилу "сложения", а не какому-то другому, и что знак "+" и в этом случае означает ту же функцию, какую он означал в прошлом — "плюс", а не "квус".

Вопрос, который вытекает из скептического аргумента, может быть облечен в две формы[13] .

Существует ли какой-нибудь факт, который бы свидетельствовал о том, что я имел в виду "плюс", а не "квус", отвечая "125" на поставленный математический вопрос?

Есть ли у меня какая-нибудь причина быть уверенным, что сейчас я должен ответить на известный вопрос "125", а не "5"?

Эти вопросы связаны: я должен ответить "125", потому что уверен, что этот ответ также соответствует тому, что я раньше имел в виду (т.е. действию "плюс"). Если есть факт, свидетельствующий о том, что я имею в виду то же, что и раньше, пользуясь знаком "+", то он может быть причиной моей уверенности в ответе "125". Иначе – мой ответ случаен, т.е. не может быть подведен под какое-то определенное правило или, что то же самое, может быть подведен под любое правило.

При этом скептик не оспаривает теперешней нашей уверенности в применении того или иного правила, в легитимности того или иного ответа, он согласен, что в соответствии с нашими теперешними правилами "68 + 57" означает 125; шире — он не оспаривает теперешних правил того языка, на котором мы с ним дискутируем: он сам говорит на этом же языке; он только оспаривает, что мое теперешнее использование языка совпадает с моим прошлыми его использованием, что теперь я подтверждаю мои прошлые лингвистические намерения. Проблема не в том, "Как я знаю, что 68 плюс 57 есть 125?" — на это можно ответить, произведя вычисление, — а в том, "Как я знаю, что "68 плюс 57" в согласии с тем, что я имел в виду под "плюсом" в прошлом, должно означать 125?". Если слово "плюс", как я использовал его в прошлом, означало функцию квус, а не плюс, тогда моя прошлая интенция была такой, что на вопрос "Сколько будет 68 плюс 57?", я должен был бы ответить "5". Имея в своем прошлом конечное число вычислений, относительно которых я полагаю, что, делая их, я применял правило сложения, но ничто не мешает нам предположить, что "на самом деле" я следовал в этих случаях правилу "квожения", причем различия между применением правил сложения и квожения не были заметны в прошлом — в том, что касается произведенных в прошлом вычислений, оба этих правила совпадают, — но различие между ними может состоять как раз в том, что сложение требует ответить 125 на известный вопрос, а квожение — 5. Поскольку я не могу сказать точно, какое правило из этих двух я действительно применял в прошлом, хотя думал, что применяю правило сложения, я не могу быть уверен, что в новом случае вычисления ответ 125 предпочтительнее, чем 5; вернее, учитывая специфику скептического поведения скептика Крипке, будучи уверен, что сейчас я должен ответить 125, поскольку сейчас-то я применяю правило сложения, я никак не могу обосновать свою уверенность в том, что в прошлом я тоже применял правило сложения, а не квожения. С другой стороны, этот скептицизм является и скептицизмом в отношении теперешнего использования правил, поскольку никакого факта из моего связанного с вычислениями прошлого не подсказывает мне, что ответ на теперешний вопрос должен быть 125, а не 5 — подобно примеру Витгенштейна "Как я знаю, что этот цвет "красный"?" (Замечания по основаниям математики, ч.1, § 3) или примеру Нельсона Гудмена с применением термина " green ", под которым в прошлом он мог постоянно понимать то, что соответствует термину " grue "[14] .