Смекни!
smekni.com

ЗИЛ-130 (стр. 3 из 6)

· Снижение динамических нагрузок при резких изменениях частоты вращения (например, при резком включении сцепления);

· Отсутствие необходимости обслуживания в процессе эксплуатации;

· Благодаря эластичности такой шарнир допускает небольшое осевое перемещение карданного вала.

Недостатки:

· Упругий полукарданный шарнир должен центрироваться, иначе нарушиться балансировка карданного вала

Жесткие полукарданные шарниры используют для компенсации неточности монтажа соединяемых механизмов на недостаточно жестком основании. Они допускают угол наклона вала не более 20. В настоящее время на автомобилях применяется крайне редко. Причиной этого являются недостатки, присущие такому шарниру: быстрое изнашивание, трудоемкость изготовления, шум при работе.

Карданные шарниры неравных угловых скоростей (асинхронные), имеющие две фиксированные оси качания, используют в карданной передаче при наклоне ведомого вала обычно на угол не более 200. Универсальные шарниры отличаются от простых тем, что в них осевая компенсация осуществляется в самом механизме шарнира, а не в шлицевом соединении.

Типичная конструкция карданного шарнира неравных угловых скоростей является крестовина с игольчатыми подшипниками, размещенными в колпачках.

Применяемые в современных автомобилях карданные шарниры неравных угловых скоростей на игольчатых подшипниках удовлетворяют поставленным требованиям при условии, если шарнир имеет рациональную конструкцию, технология производства строго соблюдается, а игольчатые подшипники надежно смазываются.

Недостатки:

· КПД карданного шарнира зависит от угла g между соединяемыми валами. С увеличением g КПД резко снижается;

· Надежность и долговечность сильно зависят от качества смазки игольчатого подшипника;

· Крестовина карданного шарнира должна строго центрироваться

Таким образом, проанализировав различные типы карданных передач и карданных шарниров можно осуществить выбор прототипа карданной передачи, задаваясь следующими требованиями:

1. Максимальный крутящий момент равен 610 кгс×м (I-ая передача)

2. Nmax = 3500 об/мин.;

3. gmax = 180;

4. lк/п = 2,5 м.

Учитывая, длину карданной передачи и обороты двигателя целесообразно применить простую двухвальную карданную передачу с одной промежуточной опорой и тремя шарнирами. Карданные шарниры неравных угловых скоростей в данном случае будут предпочтительнее, во первых, угол g позволяет применение данных шарниров, во вторых, применение шарниров равных угловых скоростей приведет к серьёзному удорожанию конструкции.

На автомобиле ЗИЛ-130 применяется именно такая же карданная передача, поэтому имеет смысл в качестве прототипа взять карданную передачу автомобиля ЗИЛ-130, без каких-либо изменений и произвести проверочный расчет на возможность передачи возросшего крутящего момента.

2. Проверочный расчет карданной передачи

Карданная передача имеет два вала – основной и промежуточный – и три жестких карданных шарнира на игольчатых подшипниках.

По своей кинематической характеристике карданная передача автомобиля ЗИЛ-130 простая, с шарнирами неравной угловой скорости. Карданная передача рассчитывается на прочность, долговечность, жесткость и критическое число оборотов вала.

Проверочный расчет карданной передачи производится в следующей последовательности:

1. Устанавливается нагрузочный режим.

2. Определяется максимальное напряжение кручения и угол закручивания карданного вала.

3. Определяется осевая сила, действующая на карданный вал.

4. Проводится оценка неравномерности вращения карданного вала и инерционного момента, возникающего от неравномерности вращения.

5. Рассчитывается крестовина карданного шарнира.

6. Рассчитывается вилка карданного вала.

7. Определяются допустимые усилия, действующие на игольчатый подшипник.

8. Определяется критическое число оборотов карданного вала.

9. Проводится тепловой расчет карданного шарнира.

2.1.Нагрузочные режимы карданной передачи.

На карданные валы действует крутящий момент, передаваемый от коробки передач, и осевые силы, возникающие при колебаниях ведущего моста на рессорах. При увеличении скорости вращения могут возникнуть поперечные колебания карданного вала. Поперечный изгиб вала происходит за счет центробежных сил, возникающих вследствие несовпадения оси вращения вала с его центром тяжести. Несовпадение может иметь место за счет неизбежных неточностей изготовления, прогиба вала под действием собственного веса и других причин.

2.2.Расчет карданного вала

Карданный вал работает на кручение, растяжение или сжатие и изгиб (при поперечных колебаниях).

Максимальное напряжение кручения вала определяется для случая приложения максимального момента двигателя и при действии макс. динамических нагрузок.

Кд - коэффициент динамичности - меняется в пределах 1-3.

Вал карданной передачи автомобиля ЗИЛ-130 (полый).

Наружный диаметр вала D=75 мм.

Внутренний диаметр вала d=70 мм.

Момент сопротивления кручению определяется по формуле:

Максимальное напряжение кручения вала определяется по формуле:

кгс/см2 =460 МПа

[

] = 300
400 МПа

Расчет вала на угол закручивания

Величина угла закручивания вала определяется по формуле:

120

где: G - модуль упругости при кручении , G = 850000 кг/см2

Lкр - момент инерции сечения вала при кручении для полого вала

см2

L - длина карданного вала моста, равна 142,5 см

Величины углов закручивания составляют при Кд = 1 от 3 до 90 на метр длины вала.

[

]= 7
80

2.3.Определение осевой силы действующей на карданный вал

Кроме крутящего момента, на карданный вал действуют осевые силы Q, возникающие при перемещениях ведущего моста.

Рис.15. Схема качения заднего моста при движении автомобиля.

1 – ведущий вал А; 2 и 4 – вилки карданного вала; 3 –

карданный вал В; 5 – ведомый вал С; a - угол поворота

вала А, b - угол поворота вала В, j - угол поворота

вала С, g1 и g2 – углы наклона между валами А, В и С.

Задний мост при движении автомобиля (рис.15) по неровностям совершает качание относительно оси серьги рессоры (точка О) по радиусу R1 . Карданный вал заднего моста колеблется вокруг точки О2 по радиусу R2.

Вследствие неравенства радиусов R1 и R2 совершаются осевые перемещения карданного вала.

Величина осевого перемещения на преобладающих режимах эксплуатации составляет 2 - 5 мм.

Величина осевой силы Q действующей на карданный вал при колебаниях автомобиля определяется по формуле:

где Dш и dш - диаметры шлицев по выступам и впадинам;

- коэффициент трения в шлицевом соединении.

Коэффициент

зависит от качества смазки:

при хорошей смазке

=0,04 – 0,6; при плохой смазке
=0,11 – 0,12.

В случае заедания при недостаточной смазке величина

=0,4 – 0,45.

Для шлицевого соединения карданного вала автомобиля ЗИЛ-130 Dш = 62 мм dш = 54 мм.

Тогда величины осевой силы будут составлять:

при хорошей смазке -

=0,05,

=1050 кгс;

при плохой смазке -

=0,115,

=2400 кгс;

при заедании -

=0,45,

=9480 кгс;

Осевые усилия, возникающие в карданной передаче, нагружают подшипники К.П. и главной передачи.