установка задней части стопы осуществляется посредством изменения наклона нижней платформы опорной части супинатора.
Специально для спортсменов фирмой разработано несколько видов стелек-ортезов и супинаторов, из которых стельки "активный спорт" оказались наиболее пригодными для кроссовой обуви.
Их особенность в том, что они позволяют контролировать положение задней части стопы и обеспечивают чувство комфорта при занятиях спортом. Поролоновое покрытие и полиэтиленовая ракушка, конгруэнтно прилегающая к стопе, с интегрированным неопреновым наполнителем обеспечивают гибкий контроль пронации и предотвращают появление подошвенного фасцита, пяточной шпоры и др.
Эти стельки рекомендуются для аэробики, тенниса, кросса, а также для игровых видов спорта, где масса тела все время переносится с одной точки опоры на другую.
Главное в ортотиксе - отображение рельефа конкретной стопы, а для этого необходимо исследовать ее отпечаток.
Основой является взятие отпечатка нейтрального положения стопы, который очень важен для конструирования индивидуальных стелек.
Используется биопена разработки фирмы "ТруФит".
Каждая упаковка состоит из двух панелей, по одной для каждой ноги. Глубина биопены - два дюйма, или 5 см. Именно такой глубины достаточно для производства отпечатка.
Спортсмен усаживается на стул так, чтобы большеберцовые кости находились перпендикулярно полу. Пятки касаются пола.
Упаковка пены помещается под стопой спортсмена, при этом большеберцовые кости должны оставаться перпендикулярными полу, а подтаранный сустав находиться в нейтральном положении.
Стопа блокируется в нейтральном положении следующим образом. Одна рука оператора находится над верхней частью стопы (левая рука - над правой стопой, а правая - над левой) таким образом, чтобы большой палец находился над средней maleolus, а указательный и средний пальцы - под боковой maleolus. Свободная рука помещается сверху колена спортсмена.
Далее следует надавить обеими руками одновременно, вдавливая стопу как пяткой, так и подушечками пальцев на всю глубину. При вдавливании в пену нужно следить, чтобы сохранялось нейтральное подтаранное выравнивание.
Затем вдавливаются пальцы ноги по всей их длине.
Стопа удаляется, и проверяется отпечаток, чтобы его боковые и задние стенки были прямыми, а пятка и подушечки пальцев стопы - вдавлены в пену равномерно по всей длине.
Процедура повторяется с другой ногой.
Далее врач-подиатрист составляет бланк заказа, в котором отмечаются его рекомендации относительно данного слепка.
На фабрике отпечатки заливают жидким медицинским гипсом и спустя 40 мин после его застывания позитив обрабатывается вручную рашпилем, лопатками, скальпелем: формируются своды стопы и наращивания, где должны быть лунки.
Далее изготавливается "ракушка" - несущая конструкция ортеза. При подборе ее толщины учитываются масса тела спортсмена и характер нагрузки. Так, при высоких игровых нагрузках проседание свода допустимо в пределах 7 мм, а при обычных - только 4 мм.
Под ракушку подкладывается наполнитель (мягкий, твердый, высокий, низкий), который и обеспечивает должное проседание свода.
После этого формируются слои верхней поверхности ортеза. Это длительный, кропотливый процесс, так как верх наносится послойно и скрепляется полимеризующими клеями под давлением и при высокой температуре в течение не менее 4 ч на каждую операцию склеивания.
Последняя стадия работы - индивидуальная обточка краев при постоянной сверке с гипсовым отпечатком.
В зависимости от модели обуви ортез может быть выполнен зауженным или широким (по размеру гипсового слепка). Поэтому индивидуальный спортивный ортез ТруФит пока чрезмерно дорог для массового спорта, но представляет большой интерес для спорта высших достижений, для отдельных выдающихся спортсменов, в том числе ветеранов. Так, их носит знаменитая баскетболистка Семёнова.
Несколько дешевле другая разновидность современной спортивной стельки "Formthotics" - стельки фирмы Foot science international, которые разработаны специалистами спортивной медицины Новой Зеландии. Они делаются из специального термопластического материала по особой технологии с фиксацией стопы пациента в скорректированном положении с учетом движений конечности, что, по мнению специалистов фирмы, приводит к моделированию оптимального рисунка движения отдельных частей стопы во время ходьбы.
Через 4 мин материал стелек остывает, как бы запоминая оптимальную конфигурацию подошвенной части стопы. Носочная часть стельки пробита отверстиями для обеспечения паропроницаемости, так как она изготавливается из вспененного полиэтиле на (с пузырьками воздуха).
Специалисты фирмы считают, что благодаря динамичному снятию отпечатка полученная стелька учитывает индивидуальные особенности изменения формы стопы во время всей фазы опоры и что это принципиально отличает стельки "Formthotics" от всех других подобных ортопедических приспособлений, в которых учитывается только одномоментное положение стопы.
Оптимальная упругость и эластичность этих стелек, по рекламным данным, обеспечивают сглаживание удара в момент постановки стопы на грунт и вместе с тем позволяют стопе идеально адаптироваться к неровностям почвы в фазе опоры.
Помимо стабилизации стопы и голеностопного сустава в фазе опоры стельки исключают гиперпронацию (чрезмерный выворот стопы кнаружи), что снимает перегрузки и боли вышестоящих отделов тела (колено, поясница, шея).
При сравнительном анализе ортотиксов фирмы "ТруФит" со стельками "Формтотикс" выявлено следующее.
Прежде всего чуть ли не втрое больший срок эксплуатации, многослойность материалов с использованием внутреннего слоя кожи с высокими гигиеническими свойствами, что показали наши исследования, большие амортизационные и упругие свойства в продольном своде.
Кроме того, мы считаем спорным вопрос динамической прокатки стопы при снятии отпечатка. На наш взгляд, такой прием нивелирует особенности стопы, что снижает значимость использования принципа индивидуальности.
Немаловажным гигиеническим фактором являются бактерицидные свойства ортотиксов фирмы "ТруФит".
В любом случае необходим системный учет особенностей стопы спортсменов как по спортивной специализации, так и конкретных возрастно-половых и квалификационных, что было подтверждено анализом рентгенограмм стоп спортсменов в баскетбольных ботинках (С.А. Полиевский, 2001).
В ряде исследований разработана методика комплексной оценки гигиенических свойств спортивной кроссовой обуви с ортотиксом.
Спортивная обувь кроссового назначения - наиболее массовая для спортсменов ДЮСШ, школьников, учащихся СПТУ и техникумов, студентов вузов - в наибольшей степени удовлетворяет их спортивные и бытовые потребности, тем более что кроссовки стали предметом повседневной носки.
Комплекс исследовательских методик включал методы оценки физико-гигиенических свойств обувно-стелечных материалов, их санитарно-химический анализ, наблюдения за параметрами внутриобувного микроклимата в модели спортивных нагрузок, анкетирование спортсменов по итогам опытной носки изделий.
Изучение внутриобувного микроклимата включало определение влажности и температуры внутриобувного пространства телеметрическим методом с параллельным определением температуры кожи стопы и в динамике спортивных нагрузок проводилось посредством записи на самописцах параметров температуры и влажности.
Относительная влажность внутриобувного пространства определялась при помощи угольного датчика, принцип действия которого основан на изменении размеров влагочувствительного материала при сорбировании водяного пара из окружающего воздуха и связанным с этим изменением электрического сопротивления датчиков.
Исследование физико-гигиенических свойств включало ряд показателей.
Основные гигиенические показатели материалов: влажность, намокаемость, влагоемкость, паропроницаемость и гигроскопичность - определялись стандартными методами.
Паропроницаемость (степень пропускания материалом водяных паров) и водопроницаемость (степень пропускания материалом воды) - важные гигиенические показатели материалов, используемых для изготовления верха обуви.
Определение паропроницаемости проводилось по ГОСТу 938.17-70. Метод заключается в создании разницы в упругости паров по обе стороны испытуемого образца и установлении количества паров воды, прошедших через единицу площади образца материала за единицу времени.
Определение водопроницаемости и водопромокаемости в статических условиях проводилось по ГОСТу 938.21-71.
Водопроницаемость характеризуется количеством воды, прошедшей через мокрый образец, имеющий форму круга диаметром 55 мм. Водопромокаемость характеризуется временем промокания при разности давления по обе стороны испытуемого образца. Определение момента промокания основано на изменении электропроводности материала при промокании.
Намокаемость материалов определяли по ГОСТу 938.24-72, коэффициент теплопроводности - методом двух температурно-временных интервалов по методике А. Жихарева. Воздухопроницаемость материалов определялась на приборе Н.С. Федорова по ГОСТу 938.18-70 и 128.88-77.
Гигроскопичность и влагоотдачу материалов определяли по ГОСТ 8971-78, капиллярность - по ГОСТу 938-61.
Влагоемкость (2 - и 24-часовую) материалов - по ГОСТу 938-75.
Широкое применение химических и синтетических волокон, имеющих очень высокое электрическое сопротивление, а также особенности спортивных нагрузок сделали проблему исследования электризуемости обувных материалов особо актуальной в связи с ухудшением при носке изделий качества материала, появлением неприятных ощущений, возникновением искровых разрядов из-за статических зарядов.