Смекни!
smekni.com

Биохимические изменения в организме при выполнении соревновательных нагрузок (легкая атлетика, 800 м – 2 мин.) (стр. 2 из 3)

1. Биохимические изменения в скелетных мышцах

КрФ (креатинфосфат) уже к 45 секунде затрачивается до минимума (ок. 5 ммоль.кг-1 сырой ткани).

Концентрация гликогена в мышцах уменьшается примерно на 15-20% на 1-2 минуте физической работы.

Потребление кислорода уже на 2 минуте максимально – до 100%.

Незначительно тратится белок. Увеличивается поступление в мышцы аммиака, свободных аминокислот и пептидов.

2. Биохимические изменения в крови

В крови накапливается продукт распада КрФ – Кр (креатин).

Концентрация продукта распада гликогена – лактата – в крови на 1-2 минуте достигает 20 ммоль.л-1, что приводит к увеличению кислотности и снижению рН.

На 1-2 начинает повышаться количество ионов водорода Н+ примерно до 6.10-7 ммоль. Следовательно, происходит сдвиг кислотно-щелочного равновесия (рН) максимально до 7.0.

Накапливается в плазме крови продукт распада белка – мочевина.

3. Биохимические изменения в головном мозге

Во время работы в головном мозге за счет процессов возбуждения активно используется энергия АТФ. Восстановление АТФ обеспечивается путем окислительного фосфорилирования. Основным источником энергии является глюкоза, поступающая с кровью.

4. Биохимические изменения в миокарде

При работе резко учащается частота сердечных сокращений, что требует усиленного образования АТФ, которая обеспечивается за счет аэробного окисления глюкозы. Энергетическими субстратами при данной работе является глюкоза.

5.Биохимические изменения в моче

В моче может появиться белок, а также увеличивается содержание лактата.

Вышеизложенные изменения представлены на графике сравнительного расходования и восстановления различных энергетических субстратов.

Восстановление после окончания нагрузки

После окончания работы содержание различных метаболитов возвращается к исходному уровню. При этом происходит не только восстановление затраченных энергетических ресурсов, но и их сверхвосстановление.

Прежде всего, восстанавливается содержание КрФ в мышцах. На 90% КрФ восстанавливается за 2-6 минут. А полное восстановление происходит за 0,5 – 4-6 часов. Кр устраняется быстро за 0,5 часа. Суперкомпенсаторная фаза (сверхвосстановление содержания КрФ в мышцах) происходит на 6-8 часу.

Затем восстанавливается гликоген мышц, для которого необходимо достаточное количество глюкозы. Восстановление гликогена мышц происходит за 12-20 часов. Фаза суперкомпенсации длится 24-48 часов. Лактат ликвидируется следующим путем. На 3-4 минуте после окончания работы уровень лактата в крови увеличивается, так как происходит его выход из работавших мышц. Затем начинается его устранений различными путями. 60% лактата окисляется до СО2 и Н2О. 20% превращается в пировиноградную кислоту, а затем в гликоген печени – происходит процесс глюконеогенез. Некоторая часть выделяется с потом и мочой. Полная нормализация лактата происходит за 0,5-3 часа. При перегрузке это время увеличивается.

Примерно за 0,5-1 час идет нормализация кислотно-щелочного равновесия (рН).

Процесс восстановления белка начинается сразу после нагрузки и ускоряется к 3-4 часу. Продолжается этот процесс около 2-3 суток, фаза суперкомпенсации – 3-4 сутки. Мочевина устраняется из крови примерно за 12-24 часа, причем сразу после окончания работы уровень мочевины в крови повышен.

Динамика биохимических изменений при работе и в период отдыха в большей степени зависит от активности эндокринной системы.

Содержание в плазме кортизола около 5 мг.дл-1.

Свободные жирные кислоты – около 4 ммоль.л-1.

Содержание адреналина и норадреналина слегка увеличивается.

4. Направленность изменений, развивающихся при адаптации организма к нагрузкам данного типа. Биохимические изменения, обуславливающие рост спортивных результатов. Методы оценки ведущих энергетических критериев. Качества двигательной деятельности, которые являются основными при выполнении заданной нагрузки и биохимическое обоснование методов их развития

При адаптации к физическим нагрузкам происходят определенные изменения в работающих мышцах и в организме в целом. Можно выделить следующие основные направления развития адаптационных изменений:

1. Увеличение энергетических ресурсов (КрФ, гликоген мышц).

При данной работе в основном тратится гликоген из быстрых мышечных волокон. При адаптации к такой работе произойдет увеличение запасов гликогена примерно на 50-70% от исходного уровня. Так как в начале работы тратится КрФ, то при адаптации произойдет увеличение содержания КрФ в мышцах примерно на 58%. Также тратится белок, значит, при адаптации увеличится количество сократительных белков:

- в саркоплазматическом ретикулуме на 54 %;

- в саркоплазме на 57%;

- в миофибриллах на 63%.

Толщина мышечных волокон увеличивается при постоянных тренировках примерно на 24%. Относительная масса мышц увеличивается на 32%.

2. Увеличение количества и активности ферментов, которые ускоряют реакции энергетического обмена

Количество и активность аденозинтрифосфатазы миозина увеличивается на 18%. Также увеличивается активность фосфорилазы и фосфофруктокиназы примерно на 30%.

3. Повышение эффективности энергетических процессов (повышение сопряженности окисления и фосфорилирования, увеличение доли аэробных процессов). (см. методические рекомендации, рис. 21)

Скорость основного энергетического процесса при данной работе – гликолиза – возрастает на 56%. Увеличивается мощность данного процесса: возрастает скорость накопления молочной кислоты, а также скорость избыточного выделения СО2 (~ 35 мл.кг-1). Однако в процессе многолетней тренировки, скорость избыточного выделения СО2 может уменьшаться.

Увеличивается емкость гликолиза: повышается максимальное накопление молочной кислоты в крови (~32 ммоль.л-1) , максимальная величина кислородного долга (~50 мл.кг-1), а также максимальный сдвиг рН крови.

Максимальное потребление кислорода при данной нагрузке ~ 77 мл.кг-1.мин-1. Максимальная анаэробная мощность – 1.8 м.с-1. Максимальный приход кислорода – 1.3 л.кг-1.

Таким образом, создаются предпосылки для увеличения мощности и емкости лактатного компонента выносливости, для развития скоростно-силовых качеств гликолиза. Повышается аэробная выносливость: вклад аэробных процессов идет быстрее и эффективнее.

4. Совершенствование процессов вегетативной регуляции, что приводит к быстрой мобилизации энергетических ресурсов.

5. Увеличение возможностей поддержания постоянства рН (буферной емкости организма и устойчивости к накоплению продуктов распада – лактата).

6. Увеличение структурных белков. Возрастает число митохондрий на единицу площади примерно на 30%. Содержание миоглобина повышается на 58%. Количество миостроминов увеличивается на 7-10%.

Изменения, происходящие в организме при систематических тренировках при адаптации к физическим нагрузкам, повышают возможности энергетических систем, что проявляется в изменении выраженности различных реакций на физическую нагрузку.

Методы, используемые для определения тех биоэнергетических характеристик, которые играют ведущую роль при выполнении данной соревновательной нагрузки:

Педагогические – нужно давать специфическую нагрузку и ориентироваться по времени.

Биохимические:

- величина лактатного кислородного долга;

- максимальное увеличение лактата после специфической нагрузки (1 мин – бег на 400м, 1 мин – отдых, и так 4 раза);

- максимальный сдвиг рН.

У более тренированного спортсмена максимальное накопление лактата будет выше. А увеличение показателя рН наоборот свидетельствует о недостаточной тренированности спортсмена.

Исходя из всего вышесказанного, для достижения высоких спортивных показателей при выполнении данной нагрузки, необходимо развивать такие ведущие качества двигательной деятельности, как скоростно-силовые качества и аэробную выносливость.


Словарь используемых терминов

1. АТФ – (аденозинтрифосфорная кислота) макроэргическое соединение, молекула которого состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех последовательно соединенных остатков фосфорной кислоты. АТФ содержится в каждой клетке в цитоплазме, митохондриях, ядрах и снабжает энергией большинство процессов, происходящих в клетке.

2. АДФ – (аденозиндифосфорная кислота) макроэргическое соединение, молекула которого состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и двух последовательно соединенных остатков фосфорной кислоты. Принимает участие в синтезе АТФ.

3. АМФ – (аденозинмонофосфорная кислота) макроэргическое соединение, молекула которого состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и одного остатка фосфорной кислоты.

4. Адаптация – приспособление организма к действию физических нагрузок, вызываемое биохимическими изменениями в организме.

5. Активная реакция среды – (рН) кислотно-щелочное равновесие – определенное соотношение кислот и оснований. Она достаточно постоянна в крови и составляет 7,4.

6. Актин – глобулярный белок, скрученный в две нити спиралью, составляющий тонкую нить миофибрилла.

7. Алкалоз – повышение рН, повышение щелочной реакции среды.

8. Ацидоз – понижение рН, повышение кислой реакции среды.

9. АТФ-аза – (аденозинтрифосфатаза)фермент, катализирующий отщепление от аденозинтрифосфорной кислоты одного или двух остатков фосфорной кислоты с освобождением энергии, используемой в процессах мышечного сокращения.

10. Аэробное окисление углеводов – катаболизм, процесс, идущий во всех органах и тканях, заканчивающийся полным окислением глюкозы до углекислого газа и воды.