Смекни!
smekni.com

Задачи по теории управления (стр. 3 из 3)

Для каждого звена системы автоматического регулирования из заданного набора определить и построить амплитудно-фазовую частотную характеристику (АФЧХ).

В задании следующие разновидности звеньев:

1) изодромное 1-го порядка:

;

2) колебательное (0<x<1):

3) форсирующее 1-го порядка:

.

Решение:

Если задана передаточная функция W(p), то путём подставки p=jw получаем частотную передаточную функцию W(jw), которая является комплексным выражением т.е.

, где А(w) вещественная составляющая , а К(w) мнимая составляющая. Частотная передаточная функция может быть представлена в показательной форме:

где - модуль;

- аргумент частотной передаточной

функции.

Функция М(w), представленная при изменении частоты от 0 до ¥ получило название амплитудной частотной характеристики (АЧХ).

Функция j(w), представленная при изменении частоты от 0 до ¥ называется фазовой частотной характеристикой (ФЧХ).

Частотная передаточная функция W(jw) может быть представлена на комплексной плоскости. В этом случае для каждой из частот в диапазоне от 0 до ¥ производится определение вектора на комплексной плоскости и строится годограф вектора. Годограф будет представлять собой амплитудно-фазовую частотную характеристику (АФЧХ). Таким образом, для определенной частоты имеем век­тор на комплексной плоскости, который характеризуется модулем М и аргументом j. Модуль представляет собой численное отношение амплитуды выходного гармонического сигнала к амплитуде входного. Аргумент представляет собой сдвиг по фазе выходного сигнала по отношению к входному. При этом отрицательный фазовый сдвиг пред­ставляется вращением вектора на комплексной плоскости по часовой стрелке относительно вещественной положительной оси, .а положительный фазовый сдвиг представляется вращением против часовой стрелки.

1) для

;

;
,

;
;
.

2) для

.

;
,

,
,
,
.

3) для

:

;
,

;
;
.

Задание 3.

Определить устойчивость линейной системы автоматического регулирования, характеристическое уравнение которой имеет вид:

с параметрами

;
;
;
;

Решение:

Частотный критерий устойчивости Михайлова.

Русским ученым А.В. Михайловым в 1936-1938 гг. был разработан критерий, позволяющий судить об устойчивости САР по очертаниям годографа вектора, соответствующего знаменателю частотной передаточной функции замкнутой САР при изменении частоты от нуля до бесконечности. Критерий Михайлова предполагает построение годографа на комплексной плоскости. Для построения годографа путем подстановки p=jw получают аналитическое выражение вектора D(jw):


(5.2)

Данное уравнение является комплексным и может быть представлено в виде:


Построение годографа производится по уравнению вектора D(jw) при изменении частоты от 0 до ¥.

Для случая устойчивости системы n-го порядка необходимо и достаточно, чтобы при w = 0 годограф начинался на вещественной положительной оси и обходил против часовой стрелки n квадран­тов, нигде не обращаясь в нуль.

Если годограф начинается в нулевой точке комплексной плоскости или проходит через эту точку при определенной частоте, то система считается нейтральной.

Рассмотрим отдельно левую часть характеристического уравнения и приведём её к общему виду:

D(p) = a0pn + a1pn-1 + a2pn-2 + … + an-1p + an.

Подставив значение p = jw, где w – угловая частота колебаний, в формулу общего вида получим характеристический комплекс:

D(jw) = X +jY,

где

X=an - w2an-2 + w4an-4 - ..., - вещественная часть D(w) содержащая

четные степени w;

Y=w(an-1 - w2an-3 + w4an-5 -...-мнимая часть D(w) содержащая

нечетные степени w

и заменив коэффициенты

, получим

Задаваясь значениями частоты от нуля до бесконечности на комплексной плоскости построим годограф Михайлова.


Критерий устойчивости Михайлова формулируется следующим образом:

для устойчивости линейной САР необходимо и достаточно, чтобы годограф Михайлова при изменении частоты от нуля до бесконечности, начавшись на положительной полуплоскости и не пересекая начала координат, последовательно пересек столько квадрантов комплексной плоскости, какой порядок имеет полином характеристического уравнения системы.

В нашем случае построение было прекращено, когда стало ясно, что годограф из данного квадранта не выйдет. Годограф нарушил последовательный порядок пересечения квадрантов - система будет неустойчивой.

Литература

1. Теория автоматического управления / Под ред. А.А.Воронова. - М. : Высшая школа. -1977.-Ч.I.-304с.

2. Бесекерский В.А., Попов Е.П. Теория автоматического регулирования. - М. : Наука, 1974.

3. Егоров К.В. Основы теории автоматического управления. – М. : “Энергия”, 1967