В другом варианте схемы блок слежения Лауэнбергера заменен фильтром Кальмана, который позволяет учитывать стохастический характер процессов в контакте колесо - рельс и отстраиваться от помех при измерении параметров. Работы в этом направлении еще не завершены.
Логика системы слежения с переменным рабочим интервалом
Целью регулирования сцепления является как можно более высокое использование сил сцепления при минимальном проскальзывании колеса относительно рельса. На первый взгляд напрашивается вывод об использовании с этой целью участка с максимальным коэффициентом сцепления (зона I на рис. 2). Предположим, что такой режим задан системе логики слежения. В этом случае при стохастических изменениях состояния рельсов коэффициент сцепления может кратковременно снижаться, попадая на неустойчивый участок характеристики. За то время, пока система регулирования вновь вернется к рабочей точке с максимальным коэффициентом сцепления, в тяговом тракте может возникнуть опасный эффект самовозбуждения, который приведет к режиму движения с прерывистым сцеплением между колесом и рельсом.
Оптимальным является режим движения с рабочей точкой в зоне II (зона микропроскальзываний). Здесь при малых значениях скорости перемещения поверхности колеса относительно рельса v и высоком естественном гашении колебаний использование сил сцепления в контакте колесо - рельс лишь в небольшой мере хуже, чем в зоне I. Опасность неожиданного перехода в неустойчивую область здесь значительно меньше. Устанавливающийся интервал между зонами I и II зависит от дополнительного гашения колебаний, задаваемого системой режимного регулирования. В нормальных условиях естественное гашение колебаний тягового привода с помощью режимного регулирования может быть увеличено в 5 раз по сравнению с тем, которое достигается изодромным регулированием. Если сравнивать с нерегулируемой системой, то гашение будет больше в 50 раз.
Известны публикации об использовании этого метода, базирующегося на зависящей от крутизны характеристики сцепления разности между задаваемой и реальной величинами частоты вращения тягового двигателя. Ниже рассматривается аналогичный метод, но с использованием модифицированной логики системы слежения. Он наиболее приемлем для характеристик сцепления без явно выраженных максимумов, как на кривой для влажных рельсов на рис. 2.
Использовавшиеся ранее системы слежения не могли обеспечить работу тягового привода в оптимальном режиме (зона II), так как они играли вспомогательную роль. Система слежения должна обеспечивать устойчивое положение рабочей точки на характеристике сцепления. Это может быть достигнуто при режимном регулировании моторных осей. Важно, чтобы логика слежения не использовала результатов измерения скорости подвижного состава относительно пути. В поездах с концевыми моторными вагонами (например, ICE) для измерения скорости служат немоторные оси промежуточных вагонов. В мощных локомотивах этой возможности нет, так как все колесные пары используются для тяги. Здесь остается лишь возможность применения радара для измерения поступательной скорости. В то же время из рис. 2 видно, что оптимальная величина v для разных состояний рельсов различна.
Логика системы слежения предназначена для регулирования всего тягового тракта. Основной входной величиной является задаваемое значение силы тяги Fsoll, которое вводит машинист или автоматическая система регулирования тяги и торможения (ABF). Выходная величина логики слежения - задаваемое значение ускорения asoll, путем интегрирования которого формируется задаваемое значение угловой скорости для электрических приводов с регулированием частоты вращения. При режимном регулировании входными параметрами логики слежения являются задаваемое значение вращающего момента Мsoll и его производная по времени. Вместо Мsoll может также использоваться расчетный магнитный момент Мr, так как в современных приводах они различаются незначительно.
Новым в рассматриваемом методе является также применение производной по времени
для формирования верхней точки переключения Pmax (см. рис. 2). В соответствии с характеристикой при увеличении разности скоростей v темп увеличения силы тяги и соответственно момента Мsoll должен непрерывно снижаться. Это значит, что в точке максимума сцепления производная момента Мsoll будет равна нулю, если пренебречь ускорением вращающихся масс, т. е. принять, что боксования не будет. С помощью величины Pmax может задаваться минимальный темп увеличения вращающего момента, при этом amin < asoll < amax. Таким образом, назначение логики системы слежения состоит в том, чтобы обеспечивалось условие: проскальзывание колес или увеличение разности скоростей v может быть допущено лишь в том случае, если это оправдано необходимостью увеличения силы тяги.Помимо этого планируется в системе режимного регулирования задавать параметры Pmax и Pmin через так называемый показатель использования сцепления с учетом износа (AG). С его помощью система определяет приоритетность повышения степени использования сил сцепления или предотвращения повышенного проскальзывания колес. Если задать AG = 100 %, это приведет к режиму тяги на пределе сцепления с относительно высоким проскальзыванием колес. В нормальной эксплуатации показатель AG должен быть значительно ниже. Тем самым будет обеспечено снижение износа колес, а значит, и затрат на техническое обслуживание, и капиталовложений за счет увеличения срока службы всех элементов тягового тракта.
Стенд для моделирования регулирующих систем тягового привода
Для испытаний и оптимизации новых систем регулирования тягового привода существует несколько возможностей:
цифровое моделирование всей системы тягового привода;
проверка аппаратного и программного обеспечения путем аналогового или цифрового моделирования испытательных участков в реальном времени;
использование испытательных стендов и полигонов;
испытания отдельных компонентов или единиц подвижного состава в целом на катковых или нагрузочных стендах;
опытные поездки на линии.
В Институте электротехники разработан новый метод, основанный на использовании стенда, на котором масштабно моделируется динамика всего механического тракта в системе тягового привода электровоза серии 120. Как уже сказано, тракт тягового привода мощного электровоза может быть смоделирован как колебательная система из трех масс. Структура стенда основана на этом принципе, причем здесь могут быть реализованы собственные частоты крутильных колебаний 20 и 50 Гц. Для повышения точности моделирования и сравнимости результатов задаваемые на стенде параметры, а именно угол скручивания, частота вращения и угловые ускорения, принимаются такими же, как на локомотиве. В связи с этим одноступенчатый редуктор с цилиндрическими шестернями и таким же, как на локомотиве, передаточным числом, равным 5,067, является важнейшей составной частью стенда.
Динамика стенда должна отвечать всем требованиям, которые вытекают из закона подобия, применяемого в механике. Это достигается тем, что моменты инерции, жесткость пружин, константы гашения колебаний и внешние моменты, действующие на локомотиве, должны быть уменьшены на стенде в одном масштабе. В данном случае используемое оборудование стенда определило масштаб уменьшения параметров 1:100. Колебательная система, состоящая из электрической машины, моделирующей тяговый двигатель, и двух нагрузочных трехфазных машин, соединенных валом и моделирующих два колеса моторной оси, на стенде дополнена электромагнитными моделями двух контактов колесо - рельс. Эти модели воздействуют на поле в магнитном зазоре одной из нагрузочных электрических машин. Рассматриваемый стенд отличается от всех других тем, что здесь используется упомянутый закон механики о подобии.
В основу стенда положено исследование тяговых приводов с индивидуальным регулированием осей. На нем могут испытываться и сравниваться следующие концепции регулирования:
комплексное регулирование силы сцепления;
различные логические схемы слежения;
методы регулирования частоты вращения;
режимное регулирование с активным подавлением колебаний;
расчет и оценка механических режимных параметров;
определение срока службы компонентов тягового привода.
Системы регулирования тягового привода исследуются с помощью устройства ASG, являющегося оригинальной разработкой.
Преимущество стендовых испытаний перед натурными заключается в том, что стенд приспособлен для исследования экстремальных динамических нагрузок и оборудован защитными муфтами. Благодаря этому возможны испытания с рабочими точками, расположенными на неустойчивых участках характеристики сцепления, и новыми системами регулирования. При этом отсутствуют ограничения, связанные с опасностью повреждения компонентов тягового тракта.
Другое преимущество заключается в том, что при испытаниях воспроизводимы все режимы.
Концепцией стенда, основу которого составляют три электрические машины, определяется число масс в модели колебательной системы, равное трем.
Тяговый привод стенда состоит из асинхронного двигателя мощностью 18,5 кВт с короткозамкнутым ротором и преобразователя с промежуточным звеном постоянного напряжения мощностью 25 кВ·А. Постоянная времени регулирования частоты вращения равна 5 мс. Номинальные режимы стенда в соответствии с масштабом уменьшения 1:100 следующие: мощность 14 кВт, вращающий момент 75 Нм, момент при трогании 105 Нм. Параметрами стенда они обеспечиваются с большим запасом.
Обе нагрузочные машины мощностью по 30 кВт моделируют инерцию масс двух колес моторной оси. С помощью собственных преобразователей в них формируются нагрузочные моменты на базе электромагнитных моделей контакта колесо - рельс. Нагрузочные машины и их преобразователи имеют достаточную мощность для моделирования любых режимов. Так, каждый из нагрузочных приводов в состоянии противостоять вращающему моменту, передаваемому редуктором от тягового двигателя, что соответствует полной разгрузке колеса. Динамика их вращающего момента такова, что позволяет оптимально моделировать характеристику сцепления.