Для опор вала конической шестерни также используют конические роликовые подшипники. При очень высокой частою вращения вала-шестерни применяют подшипники шариковые радиально-упорные. Первоначально принимаем подшипники радиально-упорные средней серии.
3.4.2. Выбор схемы установки подшипников.
В большинстве случаев валы должны быть зафиксированы от осевых смещений. По способности фиксировать осевое положение вала опоры разделяют на фиксирующие и плавающие. В фиксирующих опорах ограничивается осевое перемещение вала в одном или обоих направлениях. В плавающих опорах осевое перемещение вала в любом направлении не ограничивается. Фиксирующая опора воспринимает радиальную и осевую нагрузки, а плавающая опора—только радиальную.
Подшипники качения выпускают следующих классов точности (в порядке ее повышения): 0, 6, 5, 4 и 2. Обычно применяют подшипники класса точности 0. Подшипники более высоких классов точности применяют для опор валов, требующих повышенной точности вращения или работающих при особо высоких скоростях вращения. С повышением класса точности подшипника стоимость его заметно возрастает.
В большинстве случаев валы должны быть зафиксированы от осевых смещений. По способности фиксировать осевое положение вала опоры разделяют на фиксирующие и плавающие. В фиксирующих опорах ограничивается осевое перемещение вала в одном или обоих направлениях. В плавающих опорах осевое перемещение вала в любом направлении не ограничивается. Фиксирующая опора воспринимает радиальную и осевую нагрузки, а плавающая опора—только радиальную.
В некоторых конструкциях применяют так называемые «плавающие» валы. Эти валы имеют возможность осевого смешения в обоих направлениях и устанавливаются на плавающих опорах.
Осевую фиксацию широко применяют в коробках передач, редукторах и в других узлах для валов цилиндрических зубчатых передач, а также для приводных валов ленточных транспортеров, цепных конвейеров.
Подшипники обеих опор должны быть нагружены по возможности равномерно. Поэтому если опоры нагружены кроме радиальной еще и осевой силой, то для более равномерного нагружения подшипников в качестве плавающей выбирают опору, нагруженную большей радиальной нагрузкой.
При температурных колебаниях плавающий подшипник перемещается в осевом направлении на величину удлинения (укорочения) вала. Так как это перемещение может происходить под нагрузкой, поверхность отверстия корпуса изнашивается. Поэтому при действии на опоры вала только радиальных нагрузок в качестве плавающей выбирают менее нагруженную опору.
Осевую фиксацию валов применяют в цилиндрических передачах.
Принимаем фиксирующие опоры.
3.5. Составление компоновочной схемы.
После определения расстояний между деталями передачи, диаметров ступеней валов, после выбора типа подшипников и схемы их установки приступают к вычерчиванию редуктора или коробки передач.
4. Конструирование шестерни и колеса
Размер ступицы определяют но соотношениям для цилиндрическихзубчатых колес.
При относительно небольших диаметрах колеса изготовляют из прутка, при больших заготовки получают свободной ковкой с последующей токарной обработкой.
При любой форме колес внешние углы зубьев притупляют фаской , обрабатывая колеса по внешнему диаметрупараллельно оси посадочного отверстия. Торец зубчатого венца используют для установки заготовки при нарезании зубьев. Для уменьшения объема точной механической обработки выполняют выточки глубиной 1...2 мм.
С целью экономии относительно дорогих сталей, идущих на изготовление конических колес, целесообразно колеса выполнять составными. В зависимости от размеров колеса зубчатый венец крепят к стальному центру болтами, установленными без зазора (под развертку), или к фланцу вала заклепками;зубчатый венец располагаюттак, чтобы осевая сила, возникающая в зацеплении, быланаправлена на опорный фланец.
Широкое применение имеют конические колеса с круговыми зубьями, которые нарезают резцовыми головками, закрепляя заготовку на оправке. Чтобы такое нарезание можно было осуществить, необходимо предусмотреть свободный выход инструмента.
5. Расчёт шпоночных соединений.
Для передачи вращающего момента
с колеса на вал применим шпоночное соединение. ммШпонка призматическая (табл. 12.5): b=25 мм, h =14 мм, t1 =9 мм. Длина шпонки l=107 мм, рабочаядлина lp= l - b =107 – 25 = 82мм. Расчетные напряжения смятия:
что меньше [s]см=140 Н/мм2 для чугунной ступицы шкива. Условие выполнено
Рассчитаем шпоночное соединение для передачи вращающего момента
с звездочки на входной вал редуктора. ммШпонка призматическая (табл. 12.5): b=20 мм, h =12 мм, t1 =7,5 мм. Длина шпонки l=53 мм,рабочаядлина lp= l - b =53 – 20 = 33 мм. Расчетные напряжения смятия:
что превышает допустимое напряжение при установке стальной полумуфты [s]см=90 Н/мм2. Рекомендуется увеличить длину шпонки.
6. Расчет подшипников качения.
6.1. Определение реакций опор.
Расчетные схемы для определения реакций опор валов редуктора приведены на рисунке, Силы здесь изображены как сосредоточенные, приложенные в серединах ступиц. Линейные размеры (мм) в предположении установки валов берут по компоновочной схеме.
Силы в зацеплении были определены выше:
; ;Сила
действует со стороны ременной передачи, определена из расчета передачи.Линейные размеры, необходимые для определения реакций, берем по компоновочной схеме l1=88 мм, l2=125 мм, l3=213 мм, l4=130 мм, l5=368 мм, dм1= 100 мм, dм2= 401 мм.
Быстроходный вал
Реакция от сил в зацеплении:
в плоскости XOY
- реакции найдены правильно.в плоскости YOZ
- реакции найдены правильно.Суммарные реакции опор для расчета подшипников:
Реакция от сил в зацеплении:
в плоскости YOZ
- реакции найдены правильно.в плоскости YOZ
- реакции найдены - реакции найдены правильно.Суммарные реакции опор для расчета подшипников:
6.2. Подбор подшипников для тихоходного вала.
Частота вращения вала n = 79,24 об/мин, требуемая долговечность
. d=85На опоры вала действуют силы:
; ;Предварительно принимаем подшипники роликовые конические серии 7616 . Из табл. для этого подшипника выписываем: