Смекни!
smekni.com

Техническая эксплуатация автомобилей Основы обеспечения (стр. 3 из 31)

В правой части графика построены кривые двух спектров 1 и 2 (по результатам обработки двух осциллограмм напряжений в детали на оси абсцисс отложены числа циклов, а по оси ординат — соответствующие им напряжения). Здесь же условно показана кри- вая Велера (поскольку ./V, много больше л, кривая должна располагаться по оси гораздо правее). Просчитывая для различных амплитуд отношения р> = — и откладывая их в некотором масштабе

в левой части графика, можно получить кривые повреждений, составляющих спектры напряжений. Площадь П, ограничиваемая этими кривыми, характеризует общее повреждающее воздействие спектров. Повреждающее воздействие спектра 2 больше повреждающего воздействия спектра 1.

На основании данных сравнительного анализа можно сделать вывод, что долговечность деталей автомобиля по усталостным разрушениям существенно зависит от условий эксплуатации. Режим работы, характеризующийся спектром больших редких нагрузок и большим числом циклов с малыми нагрузками, может оказаться менее опасным, чем режим работы с большим числом средних нагрузок.

Большое влияние на накопление усталости имеет величина среднего напряжения от, когда цикл нагрузок не симметричен, т.е. циклические нагрузки накладываются на некоторое постоянное напряжение в детали. Это могут быть не только напряжения, возникающие при функционировании автомобиля, но и напряжения, образующиеся при изготовлении детали. Наличие остаточных напряжений затрудняет не только прогнозирование долговечности деталей автомобиля, но и мест появления усталостных трещин. Например, трещины в стойке кузова появляются в том месте, где не возникают большие напряжения при работе автомобиля, но существуют большие остаточные напряжения после

Рис. 1.9. График анализа накопления в детали усталостных повреждений для различных нагрузочных спектров: П|— площадь, характеризующая

усталостные повреждения спектра !; П2 — площадь, характеризующая усталостные повреждения спектра 2

13


штамповки; перешлифованный под ремонтный размер коленчатый вал ломается, а причиной тому являются внутренние напряжения, возникающие при нарушении режимов шлифования, ит.п.

Следует иметь в виду, что спектры напряжений в деталях и накопление усталости зависят не только от дорожного покрытия и скорости движения автомобиля, но и от вибрационных характеристик перевозимого груза. Может, например, оказаться, что рама грузового автомобиля, перевозящего 10 т влажного зерна, подвергается усталостному разрушению меньше, чем при перевозке 5 т досок (вибрация груза может вызывать вибрацию деталей автомобиля, а влажное зерно играет роль амортизатора).

Появление усталостной трещины в элементе сложной пространственной конструкции может изменить жесткость этого элемента и перераспределить нагрузки в элементах конструкции. После этого трещина может прекратить свое развитие. Известны случаи, когда после появления видимой трещины деталь работала 90 % от общего срока ее службы [1].

Признаком усталостного разрушения является «хрупкий» излом и наличие двух зон на изломе детали: часть сечения детали имеет блестящую поверхность, а часть — шероховатую («сахарную») поверхность. Шероховатая поверхность — это зона свежего излома, обнаруживающего кристаллическую структуру металла, а блестящая — это зона трещины, которая развивалась медленно, долго, и за счет упругой деформации детали вершины кристаллов терлись друг о друга и сглаживались. На рис. 1.10 показан вид сломанной пружины подвески, а на рис. 1.11 — излом коленчатого вала двигателя.

Рис. 1.10. Пружина под- Рис. 1.11. Усталостный излом шейки коленча

вески, разрушенная уста- того вала лостной трещиной

Таблица 1.1

Предел выносливости металлов (в процентах от первоначального значения) по окончании года хранения

Марка стали

Способ хранения

В закрытом складе

На открытой площадке

Ст2

88

60

Сталь 20

90

72

У8

72

43

Межкристаллитная коррозия — это процесс диффундирования (просачивания) кислорода в кристаллическую решетку металла. Этот процесс снижает усталостную прочность деталей (табл. 1.1).

Как видно из табл. 1.1, после долгого хранения стали будут плохо работать при циклических нагрузках, на деталях могут быстро возникать усталостные трещины. Известны случаи коррозионного растрескивания высокопрочных сталей, попадающих в агрессивные коррозионные среды, когда кислород как бы разъединяет кристаллы в кристаллической решетке.

I [аводороживанне — это процесс диффундирования водорода в кристаллическую решетку металлов, приводящий к повышению хрупкости и снижению усталостной прочности детали. Наводороживаиие может происходить при нарушении режимов нанесения гальванических покрытий на поверхность деталей. На практике известны случаи поломки хромированных компрессионных поршневых колец автомобильных двигателей из-за усталости, поскольку кольца в процессе работы вибрируют как упругие балки и галопируют на масляном клине при скольжении по стенке цилиндра. На рис. 1.12 показан поршень, у которого сломанный конец хромированного кольца в процессе работы «разбил» (т.е. деформировал) канавку.

Межкристаллитная адсорбция (эффект Ребнндсра) — это процесс разупрочнения деталей за счет расклинивающего действия молекул, попадающих в трещины или надрезы. Будучи высоко поляризованными и обладающими хорошей адгезией, молекулы, контактирующие с поверхностью детали, стараются «смочить» всю поверхность и устремляются в трещину. Когда ширина трещины становится соизмеримой с размером молекул, они начинают раздвигать ее, что приводит к росту трещины (рис. 1.13).

Известны опыты, в которых на разрывной машине испытывались нагретые до 300 °С образцы с надрезом. В обычных условиях разрушающее усилие было равно 118 кН, а когда на надрез при испытаниях наносили паяльником припой, то такие же образцы разрушались при нагрузке 20 кН. Это явление впервые в 1928 г. объяснил академик П.А. Ребиндер |30|.

15


Рис I 12 IIopuia^Pie(|>op\inpoH,iii-

ной сломанным кольцом канавкой

Расклинивающим действием для автомобильных деталей обладают смазочные материалы, присадки к ним, этиленгликоли охлаждающих жидкостей и др. На рис. 1.14 показан случай поломки чугунного распределительного вала газораспределительного механизма (ГРМ) после того, как владелец автомобиля добавил в

масло купленную в магазине противоизносную присадку.

Вид излома распредвала явно однородный и не имеет двух зон, характерных для усталостного излома. Заметный выступ на поверхности излома располагается в плоскости разъема литейных форм, где при протекании чугуна образовался заусенец, который был снят при механической обработке (следы обработки видны сбоку распредвала, на рисунке не показаны). Можно предположить, что из-за разной скорости застывания участков вала в нем в этой зоне остались внутренние напряжения, из-за которых при сверлении отверстия для смазки образовалась трещина. Попавшая в трещину

смачивающие поверхность

Рис. 1.13. Схема расклинивания трещины молекулами активной среды:

Р — сила расклинивания трещины

Рис. 1.14. Излом распределительного вала газораспределительного механизма двигателя

Молекулы активной среды,

молекулами активной среды

16

противениноснам п|филки. активно смачивающая поверхность, расклинила трещину и привела к разрушению вала при его работе: Имеются данные, что смазочные масла в среднем снижают усталостную прочность деталей машин на 20% [1].

Изменение свойств неметаллических материалов весьма разнообразно и должно рассматриваться отдельно в каждом конкретном случае. Например, смазочное масло значительно меняет вязкость при изменении температуры — это влияет на условия подачи масла в зону трения, на характеристики работы амортизаторов автомобиля, что, в свою очередь, влияет на динамические нагрузки, испытываемые деталями автомобиля и т.д.

Понижение температуры приводит к выпадению в осадок парафиновых фракций дизельного топлива, и при этом форсунки будут подавать в цилиндры «другое» топливо и т.п.

В конструкции автомобиля используются различные по своей природе пластмассы, которые также по-разному будут менять свои свойства в процессе эксплуатации автомобиля.

В качестве примера рассмотрим только изменение фрикционных свойств резины. Если для металлических деталей коэффициент трения в сопряжении зависит, главным образом, от наличия или отсутствия в зоне трения смазки, то коэффициент трения резины о сталь существенно зависит от давления в контакте р (рис. 1.15). По опытным данным, при увеличении давления от 0,1 до 24 МПа коэффициент трения / уменьшается в девять раз [30].

При изменении температуры коэффициент трения также существенно меняется (рис. 1.16).