Смекни!
smekni.com

Строительные машины 2 Принципы устройства (стр. 1 из 45)

Введение

Строительству в нашей стране уделяют особое внимание, так как оно в значительной степени обеспечивает развитие других отраслей народного хозяйства и повышает уровень благосостояния населения.

Данный учебник написан в соответствии с программой курса для специальности «Промышленное и гражданское строительство». Первое издание книги вышло в 1965 г., второе — в 1971 г. Третье издание книги значительно переработано и до' полнено на основе достижений науки и техники последних лет; все физические величины параллельно с системой единиц МКГСС даны в Международной системе единиц СИ.

Авторами приведен минимум материала, которого достаточно для того, чтоб студенты могли изучить принципы устройства и работы машин, физическую сущность явлений, происходящих при их эксплуатации, технические параметры машин и технико-экономические показатели их работы, а также на практике правильно выбрать машину для выполнения заданных технологических операций, оценить влияние отдельной машины и условий работы на ее производительность и т. д.

Курс «Строительные машины» содержит общие вопросы конструкций строительных машин, где излагаются основные характеристики отдельных машин — проходимость, маневренность и др., а также системы управления, силовые установки, ходовая часть машин, методы расчета тяговых усилий, определение сил сопротивления рабочих органов при разрушении грунтов и пород и т. д.

На основе опыта использования этого учебника в различных вузах, а также требований, которые предъявляют на данном этапе строители, авторы в третьем издали изменили объемы некоторых разделов: сокращен объем материала по машинам для земляных работ, увеличен объем материала по ручным машинам, так как они получают все большее применение (ими пользуются около 60% строителей и монтажников).

Для облегчения изучения курса студентами заочных вузов в учебник включены контрольные вопросы.

Общие сведения о деталях машин

Машины и механизмы состоят из отдельных деталей. Деталь представляет собой одно целое (вал, винт и др.). Группа деталей, работающих в комплексе и объединенных общим назначением, называется узлом (коробка передач, редуктор и др.). Различают детали простые (гайка, шпонка, винт и т. д.) и сложные (коленчатый вал, корпус ковша экскаватора, корпус редуктора).

В курсе деталей машин изучаются детали и узлы общего назначения, встречающиеся почти во всех машинах: болты, валы, муфты, механические передачи и др.

Эффективная работа машин, срок их службы определяются прочностью, жесткостью, виброустойчивостью, износостойкостью, теплостойкостью и надежностью деталей этих машин.

Прочность — свойство детали сопротивляться разрушению под действием на нее внешних нагрузок. Прочность детали зависит от характера приложения нагрузки, от формы детали, а также от материала, из которого она изготовлена.

На детали могут действовать нормальные, случайные и аварийные нагрузки. Нормальные нагрузки по величине и характеру соответствуют паспортным условиям работы машины. По ним ведется расчет на долговечность. Случайные нагрузки — наименее выгодные сочетания одновременно действующих на деталь нагрузок, которые возможны во время работы при исправных механизмах, правильном управлении и эксплуатации машины в очень тяжелых условиях; они вызывают максимальные напряжения в детали. Расчет детали на прочность ведут, исходя из этих нагрузок. Размеры, форма детали, материал и его обработка должны быть такими, чтобы напряжения, возникающие при работе детали, от этих нагрузок не превосходили допустимых величин. Аварийные нагрузки могут возникнуть в случае неисправной работы механизмов или нарушения правил управления и эксплуатации. По этим нагрузкам рассчитывают предохранительные устройства с тем, чтобы нагрузка на деталь не превосходила случайной нагрузки.

С точки зрения изменения напряжений во времени их можно разделить на постоянные и переменные (рис. 1.1). Переменные напряжения могут быть симметричными (рис. 1.1,б), асимметричными, знакопостоянными (рис. 1.1, в), знакопеременными (рис. 1.1, г) или пульсирующими (рис. 1.1, д).

Постоянное по времени напряжение (рис. 1.1 а) характеризуется максимальным значением s = sтах .

Переменное по времени напряжение характеризуется следующими видами напряжений: sтах —максимальным; sтin — минимальным; sт= sтах + sтin / 2 — средним; sт= sтах - sтin / 2 — амплитудным, а

также r=sтах /sтin — характеристикой цикла. Для симметричного цикла (рис. 1.1, б):

sтах > 0; sтin< 0; sтах = sтin; sт = 0; sа = sтах, r = — 1.

Для несимметричного знакопостоянного цикла (рис. 1.1, в):

sтах > 0; sтin > 0; sтах > sтin; sт > 0; sа = 0, r > 1.

Для несимметричного знакопеременного цикла (рис. 1.1, г):

sтах > 0; sтin < 0; sа > 0 или sa < 0 ; sт > 0 или sт < 0 ; r < 0. Для пульсирующего цикла (рис. 1.1, д):

sтах > 0; sтin = 0; sт > 0; sа > 0 ; r = 0.

Рис. 1.1. Графики изменения напряжений

Полученные фактические напряжения в расчетном сечении детали следует сравнить с допустимыми. Необходимо, чтобы соблюдалось основное условие прочности:

s £ [s] и t £ [t],

где [s] = sпред/n; [t] = tпред/n, [s], [t] - допускаемые нормальное и касательное напряжения; sпред tпред - предельные нормальное и касательное напряжения; п — коэффициент запаса прочности.

п = п1п2п3,

где п1 — коэффициент, учитывающий однородность физикомеханических свойств материала (для стали п1 = 1,2 ¸ 1,5; для чугуна п1=1,5 ¸ 2,5); п2—коэффициент, учитывающий достоверность определения расчетных нагрузок и напряжений (п2 = 1,0 ¸ 1,5); п3— коэффициент, учитывающий специфические условия работы; выбирается в зависимости от степени ответственности детали. Для узлов, нарушение работы которых не приводит к крупным материальным затратам, п3 = 1,05 ¸ 1,15, в противном случае п3 = 1,15 ¸ 1,5.

Для машин, работа с которыми опасна для жизни, коэффициент запаса прочности регламентирован нормами Гостехнадзора.

Жесткость детали характеризуется величиной ее упругой деформации под влиянием действующих на нее нагрузок. Для обеспечения необходимой жесткости материал и размеры детали выбирают такими, чтобы величина ее деформации не превышала допустимую, иначе работа машины нарушится. Например, при недостаточной жесткости вала, т. е. при его изгибе, может нарушиться работа зубчатого зацепления.

Различают собственную жесткость деталей, когда деформируется весь объем материала (изгиб вала), и контактную жесткость, когда деформируются поверхностные слои материала (смятие поверхностей зубьев зубчатых колес в местах их контакта).

Потеря устойчивости характеризуется необратимой деформацией детали или конструкции (фермы), они теряют первоначальную форму, становятся неработоспособными.

Виброустойчивость — работоспособность деталей в условиях вибрации. Вибрации быстро выводят детали из строя вследствие усталостных напряжений, поэтому при проектировании машин, на которых устанавливают вибраторы, особое внимание уделяют расчету деталей на виброустойчивость. Одновременно подбирают условия, при которых предотвращается возможность появления вибрации в тех деталях, где они не требуются.

Износостойкость — свойство материала оказывать сопротивление изнашиванию. Изнашивание — это процесс постепенного изменения поверхностных размеров деталей, происходящего при трении. Износ — результат изнашивания в виде изменения размеров детали и свойств ее поверхности.

Основные виды изнашивания: 1) механическое — абразивное изнашивание при хрупком разрушении поверхности; 2) молекулярномеханическое — схватывание поверхностей двух сопряженных деталей и проникновение металла одной детали на другую; 3) коррозионномеханическое — результат воздействия агрессивной среды на поверхность деталей; 4) молекулярно-тепловое — возникает в результате трения между деталями, а также воздействия тепловых процессов, которые происходят в отдельных узлах машин.

Износ снижает прочность и жесткость, долговечность и надежность детали, может увеличить динамические нагрузки вследствие увеличения зазоров в деталях. Износ уменьшается при смазке трущихся поверхностей, снижении давления между ними, предохранении деталей от попадания на трущиеся поверхности абразивных частиц и агрессивных сред.

Надежность — свойство изделия выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах втечение требуемого промежутка времени или требуемой наработки. Надежность можно определять для машины в целом или для отдельных ее агрегатов, узлов и деталей. Для оценки надежности выбирают различные показатели: число отказов в работе, средний срок службы в часах, число километров пробега и др. Если, например, для автомобилей установлен пробег 100 000 км, а средне-статистический пробег для этого типа машин равен 95 000 км, то коэффициент надежности этих автомобилей R = 0,95.

Согласно теории вероятности коэффициент надежности сложного изделия R выражается произведением коэффициентов надежности отдельных составляющих элементов:

п

R = R1, R2, R3, ..., Ri=П Ri.

l

Рис. 1.3. Кривая изменения коэффициента надежности в зависимости от времени эксплуатации

Если, например, система включает 100 элементов с одинаковым